ÌâÄ¿ÄÚÈÝ
ÒÑÖªÓÐÇîÊýÁÐA£ºa1£¬a2£¬¡£¬an£¬£¨n¡Ý2£©£®ÈôÊýÁÐAÖи÷ÏÊǼ¯ºÏ{x|-1£¼x£¼1}µÄÔªËØ£¬Ôò³Æ¸ÃÊýÁÐΪÊýÁУ®¶ÔÓÚÊýÁÐA£¬¶¨ÒåÈçϲÙ×÷¹ý³ÌT£º´ÓAÖÐÈÎÈ¡Á½Ïîai£¬aj£¬½«
µÄÖµÌíÔÚAµÄ×îºó£¬È»ºóɾ³ýai£¬aj£¬ÕâÑùµÃµ½Ò»¸ön-1ÏîµÄÐÂÊýÁÐA1£¨Ô¼¶¨£ºÒ»¸öÊýÒ²ÊÓ×÷ÊýÁУ©£®ÈôA1»¹ÊÇÊýÁУ¬¿É¼ÌÐøʵʩ²Ù×÷¹ý³ÌT£¬µÃµ½µÄÐÂÊýÁмÇ×÷A2£¬¡£¬Èç´Ë¾¹ýk´Î²Ù×÷ºóµÃµ½µÄÐÂÊýÁмÇ×÷Ak£®
£¨¢ñ£©ÉèA£º0£¬
£¬
¡Çëд³öA1µÄËùÓпÉÄܵĽá¹û£»
£¨¢ò£©ÇóÖ¤£º¶ÔÓÚÒ»¸önÏîµÄÊýÁÐA²Ù×÷T×Ü¿ÉÒÔ½øÐÐn-1´Î£»
£¨¢ó£©ÉèA£º-
£¬-
£¬-
£¬-
£¬
£¬
£¬
£¬
£¬
£¬
¡ÇóA9µÄ¿ÉÄܽá¹û£¬²¢ËµÃ÷ÀíÓÉ£®
ai+aj |
1+aiaj |
£¨¢ñ£©ÉèA£º0£¬
1 |
2 |
1 |
3 |
£¨¢ò£©ÇóÖ¤£º¶ÔÓÚÒ»¸önÏîµÄÊýÁÐA²Ù×÷T×Ü¿ÉÒÔ½øÐÐn-1´Î£»
£¨¢ó£©ÉèA£º-
5 |
7 |
1 |
6 |
1 |
5 |
1 |
4 |
5 |
6 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
6 |
·ÖÎö£º£¨¢ñ£©Ö±½Ó°´¶¨ÒåÀ´²Ù×÷£¬Ã¿´ÎÈ¡Á½¸öÊý´úÈë¼ÆËã¼´¿ÉÇó³öA1µÄËùÓпÉÄܵĽá¹û£»
£¨¢ò£©ÏÈͨ¹ý×÷²îµÃµ½Ã¿´Î²Ù×÷ºóÐÂÊýÁÐÈÔÊÇTÊýÁУ»ÔÙ¸ù¾Ýÿ´Î²Ù×÷Öж¼ÊÇÔö¼ÓÒ»Ïɾ³ýÁ½Ïî¼´¿ÉµÃµ½½áÂÛ£»
£¨¢ó£©Ïȶ¨ÒåÔËË㣺a¡Ñb=
£¬²¢Ö¤Ã÷ÕâÖÖÔËËãÂú×ã½»»»ÂɺͽáºÏÂÉ£»ÔÙ½áºÏ£¨¢ò£©¿ÉÖªA9ÖнöÓÐÒ»ÏÔÙ°´¶¨ÒåÏÈÇó³öA5£¬×ۺϼ´¿ÉµÃµ½A9µÄ¿ÉÄܽá¹û£®
£¨¢ò£©ÏÈͨ¹ý×÷²îµÃµ½Ã¿´Î²Ù×÷ºóÐÂÊýÁÐÈÔÊÇTÊýÁУ»ÔÙ¸ù¾Ýÿ´Î²Ù×÷Öж¼ÊÇÔö¼ÓÒ»Ïɾ³ýÁ½Ïî¼´¿ÉµÃµ½½áÂÛ£»
£¨¢ó£©Ïȶ¨ÒåÔËË㣺a¡Ñb=
a+b |
1+ab |
½â´ð£º½â£º£¨¢ñ£©Ö±½Ó°´¶¨ÒåÀ´²Ù×÷£¬µ±È¡0£¬
ʱ´úÈë¼ÆËã¿ÉµÃ£ºA1£»
£¬
£»
µ±È¡0£¬
ʱ¿ÉµÃA1£º
£¬
£»
µ±È¡
£¬
ʱ£¬¿ÉµÃA1£º0£¬
£®
¹ÊÓÐÈçϵÄÈýÖÖ¿ÉÄܽá¹û£ºA1£»
£¬
£»A1£º
£¬
£»A1£º0£¬
£®¡£¨3·Ö£©
£¨¢ò£©ÒòΪ¶Ô?a£¬b¡Ê{x|-1£¼x£¼1}£¬ÓÐ
-1=
£¼0ÇÒ
-(-1)=
£¾0
ËùÒÔ
¡Ê{x|-1£¼x£¼1}£¬
¼´Ã¿´Î²Ù×÷ºóÐÂÊýÁÐÈÔÊÇTÊýÁУ®
ÓÖÓÉÓÚÿ´Î²Ù×÷Öж¼ÊÇÔö¼ÓÒ»Ïɾ³ýÁ½Ï
ËùÒÔ¶ÔTÊýÁÐAÿ²Ù×÷Ò»´Î£¬ÏîÊý¾Í¼õÉÙÒ»Ï
ËùÒÔ¶ÔnÏîµÄTÊýÁÐA¿É½øÐУ¨n-1£©´Î²Ù×÷£¨×îºóֻʣÏÂÒ»Ï¡£¨7·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©¿ÉÖªA9ÖнöÓÐÒ»Ï
¶ÔÓÚÂú×ãa£¬b¡Ê{x|-1£¼x£¼1}µÄʵÊýa£¬b¶¨ÒåÔËË㣺a¡Ñb=
£¬
ÏÂÃæÖ¤Ã÷ÕâÖÖÔËËãÂú×ã½»»»ÂɺͽáºÏÂÉ£®
ÒòΪa¡Ñb=
£¬ÇÒb¡Ña=
£¬ËùÒÔa¡Ñb=b¡Ña£¬¼´¸ÃÔËËãÂú×ã½»»»ÂÉ£»
ÒòΪa¡Ñ£¨b¡Ñc£©=a¡Ñ
=
=
ÇÒ£¨a¡Ñb£©¡Ñc=
c=
=
ËùÒÔa¡Ñ£¨b¡Ñc£©=£¨a¡Ñb£©¡Ñc£¬¼´¸ÃÔËËãÂú×ã½áºÏÂÉ£®
ËùÒÔA9ÖеÄÏîÓëʵʩµÄ¾ßÌå²Ù×÷¹ý³ÌÎÞ¹Ø ¡£®¡£®£¨12·Ö£©
Ñ¡ÔñÈçϲÙ×÷¹ý³ÌÇóA9£º
ÓÉ£¨¢ñ£©¿ÉÖª
¡Ñ
=
£»
Ò×Öª-
¡Ñ
=0£¬-
¡Ñ
=0£¬-
¡Ñ
=0£¬-
¡Ñ
=0£»
ËùÒÔA5£º
£¬0£¬0£¬0£¬0£®£»
Ò×ÖªA5¾¹ý4´Î²Ù×÷ºóÊ£ÏÂÒ»ÏîΪ
£®
×ÛÉÏ¿ÉÖª£ºA9£º
£®¡£¨14·Ö£©
1 |
2 |
1 |
3 |
1 |
2 |
µ±È¡0£¬
1 |
3 |
1 |
2 |
1 |
3 |
µ±È¡
1 |
2 |
1 |
3 |
5 |
7 |
¹ÊÓÐÈçϵÄÈýÖÖ¿ÉÄܽá¹û£ºA1£»
1 |
3 |
1 |
2 |
1 |
2 |
1 |
3 |
5 |
7 |
£¨¢ò£©ÒòΪ¶Ô?a£¬b¡Ê{x|-1£¼x£¼1}£¬ÓÐ
a+b |
1+ab |
-(a-1)(b-1) |
1+ab |
a+b |
1+ab |
(a+1)(b+1) |
1+ab |
ËùÒÔ
a+b |
1+ab |
¼´Ã¿´Î²Ù×÷ºóÐÂÊýÁÐÈÔÊÇTÊýÁУ®
ÓÖÓÉÓÚÿ´Î²Ù×÷Öж¼ÊÇÔö¼ÓÒ»Ïɾ³ýÁ½Ï
ËùÒÔ¶ÔTÊýÁÐAÿ²Ù×÷Ò»´Î£¬ÏîÊý¾Í¼õÉÙÒ»Ï
ËùÒÔ¶ÔnÏîµÄTÊýÁÐA¿É½øÐУ¨n-1£©´Î²Ù×÷£¨×îºóֻʣÏÂÒ»Ï¡£¨7·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©¿ÉÖªA9ÖнöÓÐÒ»Ï
¶ÔÓÚÂú×ãa£¬b¡Ê{x|-1£¼x£¼1}µÄʵÊýa£¬b¶¨ÒåÔËË㣺a¡Ñb=
a+b |
1+ab |
ÏÂÃæÖ¤Ã÷ÕâÖÖÔËËãÂú×ã½»»»ÂɺͽáºÏÂÉ£®
ÒòΪa¡Ñb=
a+b |
1+ab |
b+a |
1+ba |
ÒòΪa¡Ñ£¨b¡Ñc£©=a¡Ñ
b+c |
1+bc |
a+
| ||
1+a•
|
a+b+c+abc |
1+ab+bc+ac |
ÇÒ£¨a¡Ñb£©¡Ñc=
a+b |
1+ab |
| ||
1+
|
a+b+c+abc |
1+ab+ac+bc |
ËùÒÔa¡Ñ£¨b¡Ñc£©=£¨a¡Ñb£©¡Ñc£¬¼´¸ÃÔËËãÂú×ã½áºÏÂÉ£®
ËùÒÔA9ÖеÄÏîÓëʵʩµÄ¾ßÌå²Ù×÷¹ý³ÌÎÞ¹Ø ¡£®¡£®£¨12·Ö£©
Ñ¡ÔñÈçϲÙ×÷¹ý³ÌÇóA9£º
ÓÉ£¨¢ñ£©¿ÉÖª
1 |
2 |
1 |
3 |
5 |
7 |
Ò×Öª-
5 |
7 |
5 |
7 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
5 |
1 |
6 |
1 |
6 |
ËùÒÔA5£º
5 |
6 |
Ò×ÖªA5¾¹ý4´Î²Ù×÷ºóÊ£ÏÂÒ»ÏîΪ
5 |
6 |
×ÛÉÏ¿ÉÖª£ºA9£º
5 |
6 |
µãÆÀ£º±¾ÌâÊÇÒ»µÀ×ÛºÏÐÔºÜÇ¿µÄÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬Àí½â¶¨Ò壬²¢»áÓÃж¨ÒåÀ´½âÌ⣬×Ðϸ½â´ð£¬±ÜÃâ´íÎó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿