题目内容

 (本题满分12分)某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出并猜测的表达式;

(2)求证:+++…+

 

【答案】

解: (1)∵ f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴ f(5)=25+4×4=41.

f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,

f(n)=2n2-2n+1.                                           

(2)当n≥2时,==,

∴ +++…+

=1+

=1+=-.                                    

【解析】本试题主要是考查了数列的归纳猜想思想的运用,根据前几项。来猜想并运用数学归纳法加以证明。

(1)结合题目中的 递推关系式可知前几项的值,并猜想结论。

(2)分为两步骤进行,先证明n取第一个值时成立,再假设n=k时成立,证明n=k+1时也成立即可。

解: (1)∵ f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴ f(5)=25+4×4=41.

f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,

由上式规律得出f(n+1)-f(n)=4n.  ∴ f(n)-f(n-1)=4(n-1),f(n-1)-f(n-2)=4·(n-2),

f(n-2)-f(n-3)=4·(n-3),…

f(2)-f(1)=4×1,

f(n)-f(1)=4[(n-1)+(n-2)+…+2+1]=2(n-1)·n,∴ f(n)=2n2-2n+1(n≥2),

n=1时,f(1)也适合f(n).

f(n)=2n2-2n+1.                                            --------6分

(2)当n≥2时,==,

∴ +++…+[来源:Z,xx,k.Com]

=1+

=1+=-.                                    ---------------12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网