题目内容
已知a,b都是实数,那么“a>b”是“a2>b2”的( )
分析:本题考查的判断充要条件的方法,我们可以根据充要条件的定义进行判断,此题的关键是对不等式性质的理解.
解答:解:因为a,b都是实数,由a>b,不一定有a2>b2,如-2>-3,但(-2)2<(-3)2,所以“a>b”是“a2>b2”的不充分条件;
反之,由a2>b2也不一定得a>b,如(-3)2>(-2)2,但-3<-2,所以“a>b”是“a2>b2”的不必要条件.
故选D
反之,由a2>b2也不一定得a>b,如(-3)2>(-2)2,但-3<-2,所以“a>b”是“a2>b2”的不必要条件.
故选D
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
⑥涉及不等式平方大小的比较问题,举反例不失为一种有效的方法.
练习册系列答案
相关题目
已知a,b都是实数,那么“a<b”是“
>
”的( )条件.
1 |
a |
1 |
b |
A、充分不必要 |
B、必要不充分 |
C、充要 |
D、既不充分也不必要 |