题目内容
【题目】已知函数,,
(1)当时,求的最大值和最小值;
(2)求实数的取值范围,使在区间上是单调函数.
【答案】(1)的最大值为37,最小值为1;(2)或
【解析】
(1)直接将a=1代入函数解析式,求出最大最小值.
(2)先求f(x)的对称轴x=a,所以若y=f(x)在区间[5,5]上是单调函数,则区间[5,5]在对称轴的一边,所以得到a≤5,或a≥5,这样即得到了a的取值范围.
(1)当a=1时,函数的对称轴为x=1,
∴y=f(x)在区间[5,1]单调递减,在(1,5]单调递增,
且f(5)=37,f(5)=17<37,
∴f(x)min=f(1)=1,f(x)max=f(5)=37;
(2)函数的图像的对称轴为,
当,即时函数在区间上是增加的,
当,即时,函数在区间上是减少的,
所以使在区间上是单调函数或.
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的2×2列联表.请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
【题目】从某学校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…第八组[190,195],图是按上述分组方法得到的条形图.
(1)根据已知条件填写将表格填写完整;
组别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
样本 | 2 | 4 | 10 | 10 | 15 | 4 |
(2)估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数;
(3)在样本中,若第二组有1人为男生,其余为女生,第七组有1人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,问:实验小组中恰为一男一女的概率是多少?