题目内容
15.将函数f(x)=sin(2x+θ)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象的对称轴重合,则φ的值为$\frac{kπ}{2}$(k∈Z).分析 利用三角函数的图象变换可求得g(x)=sin(2x+θ-2φ),依题意可得(2x+θ)-(2x+θ-2φ)=kπ(k∈Z),对k赋值,观察选项即可.
解答 解:∵g(x)=f(x-φ)=sin[2(x-φ)+θ]=sin(2x+θ-2φ),
又f(x)=sin(2x+θ)与g(x)=sin(2x+θ-2φ)的图象的对称轴重合,
∴(2x+θ)-(2x+θ-2φ)=kπ(k∈Z),
∴φ=$\frac{kπ}{2}$(k∈Z),
故答案为:$\frac{kπ}{2}$(k∈Z)
点评 本题考查函数y=Asin(ωx+φ)的图象变换,考查正弦函数的图象的对称性,分析得到(2x+θ)-(2x+θ-2φ)=kπ(k∈Z)是关键,考查转化思想,属于基本知识的考查.
练习册系列答案
相关题目
7.空气污染,又称为大气污染,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度,达到足够的时间,并因此危害了人体的舒适、健康和福利或环境的现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:μg/m3)为0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50~100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为100~150时,空气质量级别为三级,空气质量状况属于轻度污染;当空气污染指数为150~200时,空气质量级别为四级,空气质量状况属于中度污染;当空气污染指数为200~300时,空气质量级别为五级,空气质量状况属于重度污染;当空气污染指数为300以上时,空气质量级别为六级,空气质量状况属于严重污染.2015年1月某日某省x个监测点数据统计如下:
(Ⅰ)根据所给统计表和频率分布直方图中的信息求出x,y的值,并完成频率分布直方图;
(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?
空气污染指数 (单位:μg/m3) | [0,50] | (50,100] | (100,150] | (150,200] |
监测点个数 | 15 | 40 | y | 10 |
(Ⅱ)若A市共有5个监测点,其中有3个监测点为轻度污染,2个监测点为良.从中任意选取2个监测点,事件A“其中至少有一个为良”发生的概率是多少?
4.如图所示的程序框图表示求算式“2×4×8×16×32×64”的值,则判断框内可以填入( )
A. | k<32? | B. | k<63? | C. | k<64? | D. | k<70? |
5.已知sinx=-$\frac{2}{5}$,x∈[-π,π],则x=( )
A. | arcsin-$\frac{2}{5}$ | B. | arcsin$\frac{2}{5}$或(arcsin$\frac{2}{5}$)+π | ||
C. | arcsin$\frac{2}{5}$ | D. | arcsin(-$\frac{2}{5}$)或arcsin$\frac{2}{5}$-π |