题目内容
(2010•重庆三模)已知函数f(x)=x3-3x,过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,则m的取值范围( )
分析:先将过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线转化为:方程2x3-3x2+m+3=0(*)有三个不同实数根,记g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1),下面利用导数研究函数g(x)的零点,从而求得m的范围.
解答:解:由题意得:f′(x)=3x2-3,设切点为(x0,y0),
则切线的斜率k=3x02-3=
=
,
即2x03-3x02+m+3,由条件知该方程有三个实根,
∴方程2x3-3x2+m+3=0(*)有三个不同实数根,
记g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1)
令g'(x)=0,x=0或1,
则x,g'(x),g(x)的变化情况如下表
当x=0,g(x)有极大值m+3;x=1,g(x)有极小值m+2,
由题意有,当且仅当
,即
,-3<m<-2时,
函数g(x)有三个不同零点,
此时过点A可作曲线y=f(x)的三条不同切线.故m的范围是(-3,-2).
故选A.
则切线的斜率k=3x02-3=
y0-m |
x0-1 |
x3-3x0-m |
x0-1 |
即2x03-3x02+m+3,由条件知该方程有三个实根,
∴方程2x3-3x2+m+3=0(*)有三个不同实数根,
记g(x)=2x3-3x2+m+3,g'(x)=6x2-6x=6x(x-1)
令g'(x)=0,x=0或1,
则x,g'(x),g(x)的变化情况如下表
x | (-∞,0) | 0 | (0,1) | 1 | (1,+∞) |
g'(x) | + | 0 | - | 0 | + |
g(x) | 递增 | 极大 | 递减 | 极小 | 递增 |
由题意有,当且仅当
|
|
函数g(x)有三个不同零点,
此时过点A可作曲线y=f(x)的三条不同切线.故m的范围是(-3,-2).
故选A.
点评:本小题主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关题目