题目内容
已知数列中{an}中a1=3,a2=5,其前n项和为Sn,满足Sn+Sn-2=2Sn-1+2n-1(n≥3).
(1)试求数列{an}的通项公式;
(2)令bn=
,Tn是数列{bn}的前n项和,证明:Tn<
.
(1)试求数列{an}的通项公式;
(2)令bn=
2n-1 |
an•an+1 |
1 |
6 |
分析:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3),得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),从而可得an=an-1+2n-1(n≥3),利用累加法可求得an.
(2)先表示出bn,然后利用裂项相消法求得Tn,由Tn可得结论.
(2)先表示出bn,然后利用裂项相消法求得Tn,由Tn可得结论.
解答:解:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3),得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
∵an=Sn-Sn-1,
∴an=an-1+2n-1(n≥3),
又∵a2-a1=5-3=2,
∴an-an-1=2n-1(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+2n-3+…+21+3
=
+3=2n+1,
故数列{an}的通项公式为an=2n+1.
(2)∵bn=
=
=(
-
),
∴Tn=b1+b2+b3+…+bn
=
[(
-
)+(
-
)+…+(
-
)],
=
(
-
)<
.
∵an=Sn-Sn-1,
∴an=an-1+2n-1(n≥3),
又∵a2-a1=5-3=2,
∴an-an-1=2n-1(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=2n-1+2n-2+2n-3+…+21+3
=
2(1-2n-1) |
1-2 |
故数列{an}的通项公式为an=2n+1.
(2)∵bn=
2n-1 |
anan+1 |
2n-1 |
(2n+1)(2n+1+1) |
1 |
2n+1 |
1 |
2n+1+1 |
∴Tn=b1+b2+b3+…+bn
=
1 |
2 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
9 |
1 |
2n+1 |
1 |
2n+1+1 |
=
1 |
2 |
1 |
3 |
1 |
2n+1+1 |
1 |
6 |
点评:本题考查由数列递推式求数列通项及数列求和,裂相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目