题目内容
已知命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是( )
A.否命题“若函数f(x)=ex-mx在(0,+∞)上是减函数,则m>1”是真命题 |
B.逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是假命题 |
C.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上是减函数”是真命题 |
D.逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题 |
∵f(x)=ex-mx,∴f′(x)=ex-m
∵函数f(x)=ex-mx在(0,+∞)上是增函数
∴ex-m≥0在(0,+∞)上恒成立
∴m≤ex在(0,+∞)上恒成立
∴m≤1
∴命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,是真命题,
∴逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题
∵m≤1时,f′(x)=ex-m≥0在(0,+∞)上不恒成立,即函数f(x)=ex-mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是真命题,即B不正确
故选D.
∵函数f(x)=ex-mx在(0,+∞)上是增函数
∴ex-m≥0在(0,+∞)上恒成立
∴m≤ex在(0,+∞)上恒成立
∴m≤1
∴命题“若函数f(x)=ex-mx在(0,+∞)上是增函数,则m≤1”,是真命题,
∴逆否命题“若m>1,则函数f(x)=ex-mx在(0,+∞)上不是增函数”是真命题
∵m≤1时,f′(x)=ex-m≥0在(0,+∞)上不恒成立,即函数f(x)=ex-mx在(0,+∞)上不一定是增函数,∴逆命题“若m≤1,则函数f(x)=ex-mx在(0,+∞)上是增函数”是真命题,即B不正确
故选D.
练习册系列答案
相关题目