题目内容

直线l过椭圆
x2
2
+y2=1
的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为______.
x2
2
+y2=1
,得a2=2,b2=1,所以c2=a2-b2=2-1=1.
则c=1,则左焦点F(-1,0).
由题意可知,直线l的斜率存在且不等于0,
则直线l的方程为y=kx+k.
设l与椭圆相交于P(x1,y1)、Q(x2,y2),
联立
x2
2
+y2=1
y=kx+k
,得:(2k2+1)x2+4k2x+2k-2=0.
所以x1+x2=-
4k2
2k2+1

则PQ的中点M的横坐标为
x1+x2
2
=-
2k2
2k2+1

因为△FMO是以OF为底边的等腰三角形,
所以-
2k2
2k2+1
=-
1
2
.解得:k=±
2
2

所以直线l的方程为y=±
2
2
(x+1)

故答案为y=±
2
2
(x+1)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网