题目内容
在梯形ABCD中,AB∥CD,AB=2CD,M,N分别是CD,AB的中点,设
=
,
=
.若
=m
+n
,则
=( )
| AB |
| a |
| AD |
| b |
| MN |
| a |
| b |
| n |
| m |
分析:根据题意,得到
=
且
=
,从而算出
=
+
,结合
=
-
得到
=
-
=m
+n
,由此可得m=
且n=-1,可得
的值.
| AN |
| 1 |
| 2 |
| AB |
| DM |
| 1 |
| 4 |
| AB |
| AM |
| AD |
| 1 |
| 4 |
| AB |
| MN |
| AN |
| AM |
| MN |
| 1 |
| 4 |
| a |
| b |
| a |
| b |
| 1 |
| 4 |
| n |
| m |
解答:解:∵梯形ABCD中,AB∥CD,AB=2CD,M,N分别是CD,AB的中点,
∴
=
,
=
=
∴
=
+
=
+
可得
=
-
=
-(
+
)=
-
∵
=
,
=
.∴
=
-
=m
+n
,
可得m=
,n=-1,
=
=-4
故选:B
∴
| AN |
| 1 |
| 2 |
| AB |
| DM |
| 1 |
| 2 |
| DC |
| 1 |
| 4 |
| AB |
∴
| AM |
| AD |
| DM |
| AD |
| 1 |
| 4 |
| AB |
可得
| MN |
| AN |
| AM |
| 1 |
| 2 |
| AB |
| AD |
| 1 |
| 4 |
| AB |
| 1 |
| 4 |
| AB |
| AD |
∵
| AB |
| a |
| AD |
| b |
| MN |
| 1 |
| 4 |
| a |
| b |
| a |
| b |
可得m=
| 1 |
| 4 |
| n |
| m |
| -1 | ||
|
故选:B
点评:本题在梯形中求向量的线性表达式,着重考查了梯形的性质、向量的加减法法则和平面向量基本定理及其意义等知识点,属于中档题.
练习册系列答案
相关题目