题目内容

已知(1x)na0a1(x1)a2(x1)2an(x1)n(nN*)

(1)a0Sna1a2a3an

(2)试比较Sn(n2)2n2n2的大小,并说明理由.

 

1a02n Sn3n2n.2n1时,Sn(n2)2n2n2;当n2,3时,Sn(n2)2n2n2;当n≥4nN*时,Sn(n2)2n2n2.

【解析】(1)x1,则a02n

x2,则a0a1a2a3an3n

所以Sna1a2a3an3n2n.

(2)要比较Sn(n2)2n2n2的大小,

即比较:3n(n1)2n2n2的大小.

n1时,3n(n1)2n2n2

n2,3时,3n(n1)2n2n2

n4,5时,3n(n1)2n2n2.

猜想:当n≥4时,3n(n1)2n2n2

下面用数学归纳法证明:

由上述过程可知,n4时结论成立.

假设当nk(k≥4)时结论成立,即3k(k1)2k2k2

两边同乘以3,得3k13[(k1)2k2k2]k2k12(k1)2[(k3)2k4k24k2]

(k3)2k4k24k2(k3)2k4(k2k2)6(k3)2k4(k2)(k1)60.

所以3k1[(k1)1]2k12(k1)2.

nk1时结论也成立.

所以当n≥4时,3n(n1)2n2n2成立.

综上得,

n1时,Sn(n2)2n2n2;当n2,3时,Sn(n2)2n2n2

n≥4nN*时,Sn(n2)2n2n2.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网