题目内容
(本题满分12分)
二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.
解:(1)∵f(x)为二次函数且f(0)=f(2),
∴对称轴为x=1.
又∵f(x)最小值为1,∴可设f(x)=a(x-1)2+1 (a>0)
∵f(0)=3,∴a=2,∴f(x)=2(x-1)2+1,
即f(x)=2x2-4x+3.
(2)由条件知2a<1<a+1,∴0<a<.

练习册系列答案
相关题目