题目内容
【题目】现有甲,乙两个靶,某射手向甲靶射击一次,命中的概率是 ,向乙靶射击两次,每次命中的概率是 ,若该射手每次射击的结果相互独立,则该射手完成以上三次射击恰好命中一次的概率是( )
A.
B.
C.
D.
【答案】D
【解析】解:记:“该射手恰好命中一次”为事件A,“该射手射击甲靶命中”为事件B,“该射手第一次射击乙靶命中”为事件C,“该射手第二次射击乙靶命中”为事件D
由题意知P(B)= ,P(C)=P(D)= ,
由于A=B + C +
根据事件的独立性和互斥性得
P(A)=P(B )+P( C )+P( D)=P(B)P( )P( )+P( )P(C)P( )+P( )P( )P(D)
= ×(1﹣ )×(1﹣ )+(1﹣ )× ×(1﹣ )+(1﹣ )×(1﹣ )× = ,
故选:D
【题目】为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡的株数:
温度(单位:℃) | 21 | 23 | 24 | 27 | 29 | 32 |
死亡数(单位:株) | 6 | 11 | 20 | 27 | 57 | 77 |
经计算:,,,.
其中分别为试验数据中的温度和死亡株数,.
(1)与是否有较强的线性相关性? 请计算相关系数(精确到)说明.
(2)并求关于的回归方程(和都精确到);
(3)用(2)中的线性回归模型预测温度为时该批紫甘薯死亡株数(结果取整数).
附:对于一组数据,,……,,
①线性相关系数,通常情况下当大于0.8时,认为两
个变量有很强的线性相关性.
②其回归直线的斜率和截距的最小二乘估计分别为:
;
【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上.求:
(1) AD边所在直线的方程;
(2) DC边所在直线的方程.
【题目】为了选拔参加自行车比赛的选手,对自行车运动员甲、乙两人在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
甲 | 27 | 38 | 30 | 37 | 35 | 31 |
乙 | 33 | 29 | 38 | 34 | 28 | 36 |
(1)画出茎叶图,由茎叶图你能获得哪些信息;
(2)估计甲、乙两运动员的最大速度的平均数和方差,并判断谁参加比赛更合适.