题目内容
已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
+
,求数列{bn}的前n项和Sn;
(Ⅲ)设cn=2n(
-λ),若数列{cn}是单调递减数列,求实数λ的取值范围.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an |
an+1 |
an+1 |
an |
(Ⅲ)设cn=2n(
an+1 |
n |
分析:(Ⅰ)依题意,可求得数列{an}的首项与公差,从而可求数列{an}的通项公式;
(Ⅱ)结合(Ⅰ)an=n+1,可求得bn=2+
-
,累加即可求数列{bn}的前n项和Sn;
(Ⅲ)依题意,应有cn+1-cn=2n(
-
-λ)<0对n∈N*都成立?
-
-λ<0恒成立?λ>(
-
)max,设f(n)=
-
,可求得f(n+1)-f(n)=
,⇒f(1)<f(2)=f(3)>f(4)>f(5)>…,从而可求f(n)max,问题得到解决.
(Ⅱ)结合(Ⅰ)an=n+1,可求得bn=2+
1 |
n+1 |
1 |
n+2 |
(Ⅲ)依题意,应有cn+1-cn=2n(
2(n+3) |
n+1 |
n+2 |
n |
2(n+3) |
n+1 |
n+2 |
n |
2(n+3) |
n+1 |
n+2 |
n |
2(n+3) |
n+1 |
n+2 |
n |
2(2-n) |
n(n+1)(n+2) |
解答:解:(Ⅰ)由题知
=a1a7,设等差数列{an}的公差为d,
则(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d. …(1分)
又∵a2=3,
∴a1+d=3,
∴a1=2,d=1…(2分)
∴an=n+1. …(3分)
(Ⅱ)∵bn=
+
=
+
=2+
-
. …(4分)
∴Sn=b1+b2+…+bn=(2+
-
)+(2+
-
)+…+(2+
-
)=2n+
. …(6分)
( III)cn=2n(
-λ)=2n(
-λ),使数列{cn}是单调递减数列,
则cn+1-cn=2n(
-
-λ)<0对n∈N*都成立 …(7分)
即
-
-λ<0⇒λ>(
-
)max…(8分)
设f(n)=
-
,
f(n+1)-f(n)=
-
-
+
=
+
-
=2+
+1+
-3-
=
…(9分)
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=
,
∴(
-
)max=
所以λ>
. …(10分)
a | 2 3 |
则(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d. …(1分)
又∵a2=3,
∴a1+d=3,
∴a1=2,d=1…(2分)
∴an=n+1. …(3分)
(Ⅱ)∵bn=
an |
an+1 |
an+1 |
an |
n+1 |
n+2 |
n+2 |
n+1 |
1 |
n+1 |
1 |
n+2 |
∴Sn=b1+b2+…+bn=(2+
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
n |
2(n+2) |
( III)cn=2n(
an+1 |
n |
n+2 |
n |
则cn+1-cn=2n(
2(n+3) |
n+1 |
n+2 |
n |
即
2(n+3) |
n+1 |
n+2 |
n |
2(n+3) |
n+1 |
n+2 |
n |
设f(n)=
2(n+3) |
n+1 |
n+2 |
n |
f(n+1)-f(n)=
2(n+4) |
n+2 |
n+3 |
n+1 |
2(n+3) |
n+1 |
n+2 |
n |
=
2(n+4) |
n+2 |
n+2 |
n |
3(n+3) |
n+1 |
=2+
4 |
n+2 |
2 |
n |
6 |
n+1 |
=
2(2-n) |
n(n+1)(n+2) |
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=
4 |
3 |
∴(
2(n+3) |
n+1 |
n+2 |
n |
4 |
3 |
所以λ>
4 |
3 |
点评:本题考查数列的递推,考查数列的求和,突出考查累加法求和,考查构造函数思想与等价转化思想的综合应用,考查函数的单调性与推理分析的能力,属于难题.
练习册系列答案
相关题目