题目内容

已知公差不为0的等差数列{an}满足a2=3,a1,a3,a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{bn}满足bn=
an
an+1
+
an+1
an
,求数列{bn}的前n项和Sn
(Ⅲ)设cn=2n(
an+1
n
-λ)
,若数列{cn}是单调递减数列,求实数λ的取值范围.
分析:(Ⅰ)依题意,可求得数列{an}的首项与公差,从而可求数列{an}的通项公式;
(Ⅱ)结合(Ⅰ)an=n+1,可求得bn=2+
1
n+1
-
1
n+2
,累加即可求数列{bn}的前n项和Sn
(Ⅲ)依题意,应有cn+1-cn=2n
2(n+3)
n+1
-
n+2
n
-λ)<0对n∈N*都成立?
2(n+3)
n+1
-
n+2
n
-λ<0恒成立?λ>(
2(n+3)
n+1
-
n+2
n
)
max
,设f(n)=
2(n+3)
n+1
-
n+2
n
,可求得f(n+1)-f(n)=
2(2-n)
n(n+1)(n+2)
,⇒f(1)<f(2)=f(3)>f(4)>f(5)>…,从而可求f(n)max,问题得到解决.
解答:解:(Ⅰ)由题知
a
2
3
=a1a7,设等差数列{an}的公差为d,
(a1+2d)2=a1(a1+6d),
a1d=2d2,∵d≠0
∴a1=2d.                                                  …(1分)
又∵a2=3,
∴a1+d=3,
∴a1=2,d=1…(2分)
∴an=n+1.                                                 …(3分)
(Ⅱ)∵bn=
an
an+1
+
an+1
an
=
n+1
n+2
+
n+2
n+1
=2+
1
n+1
-
1
n+2
.            …(4分)
∴Sn=b1+b2+…+bn=(2+
1
2
-
1
3
)+(2+
1
3
-
1
4
)+…+(2+
1
n+1
-
1
n+2
)=2n+
n
2(n+2)
.                          …(6分)
( III)cn=2n
an+1
n
-λ)=2n
n+2
n
-λ),使数列{cn}是单调递减数列,
则cn+1-cn=2n
2(n+3)
n+1
-
n+2
n
-λ)<0对n∈N*都成立    …(7分)
2(n+3)
n+1
-
n+2
n
-λ<0⇒λ>(
2(n+3)
n+1
-
n+2
n
)
max
…(8分)
设f(n)=
2(n+3)
n+1
-
n+2
n

f(n+1)-f(n)=
2(n+4)
n+2
-
n+3
n+1
-
2(n+3)
n+1
+
n+2
n

=
2(n+4)
n+2
+
n+2
n
-
3(n+3)
n+1

=2+
4
n+2
+1+
2
n
-3-
6
n+1

=
2(2-n)
n(n+1)(n+2)
…(9分)
∴f(1)<f(2)=f(3)>f(4)>f(5)>…
当n=2或n=3时,f(n)max=
4
3

(
2(n+3)
n+1
-
n+2
n
)
max
=
4
3

所以λ>
4
3
.               …(10分)
点评:本题考查数列的递推,考查数列的求和,突出考查累加法求和,考查构造函数思想与等价转化思想的综合应用,考查函数的单调性与推理分析的能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网