题目内容

(本题满分12分)

已知数列的各项都为正数,,前项和满足).

(Ⅰ)求数列的通项公式;

(Ⅱ)令),数列的前项和为,若对任意正整数都成立,求实数的取值范围.

 

【答案】

 

(Ⅰ)

(Ⅱ)

【解析】解:(Ⅰ)∵

又∵,∴

),

∴数列是等差数列,首项为,公差为1,

,∴

时,

∴数列的通项公式为.

(Ⅱ)

.

得  对任意正整数都成立,

,∴.

,则

上递增,∴对任意正整数的最小值为5,

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网