题目内容
已知cos(x-
)=
,x∈(
,
).
(1)求sinx的值;
(2)求sin(2x+
)的值.
π |
4 |
| ||
10 |
π |
2 |
3π |
4 |
(1)求sinx的值;
(2)求sin(2x+
π |
3 |
(1)因为x∈(
,
),
所以x-
∈(
,
),
sin(x-
)=
=
.
sinx=sin[(x-
)+
]
=sin(x-
)cos
+cos(x-
)sin
=
×
+
×
=
.
(2)因为x∈(
,
),
故cosx=-
=-
=-
.
sin2x=2sinxcosx=-
,
cos2x=2cos2x-1=-
.
所以sin(2x+
)=sin2xcos
+cos2xsin
=-
.
π |
2 |
3π |
4 |
所以x-
π |
4 |
π |
4 |
π |
2 |
sin(x-
π |
4 |
1-cos2(x-
|
7
| ||
10 |
sinx=sin[(x-
π |
4 |
π |
4 |
=sin(x-
π |
4 |
π |
4 |
π |
4 |
π |
4 |
=
7
| ||
10 |
| ||
2 |
| ||
10 |
| ||
2 |
4 |
5 |
(2)因为x∈(
π |
2 |
3π |
4 |
故cosx=-
1-sin2x |
1-(
|
3 |
5 |
sin2x=2sinxcosx=-
24 |
25 |
cos2x=2cos2x-1=-
7 |
25 |
所以sin(2x+
π |
3 |
π |
3 |
π |
3 |
=-
24+7
| ||
50 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目