题目内容

(2012•淄博二模)正三角形ABC的边长为2.将它沿高AD翻折,使得平面ABD⊥平面ADC,则三棱锥B-ADC的外接球的表面积为
分析:三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积即可.
解答:解:根据题意可知三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,
所以求出长方体的对角线的长为:
1+1+3
=
5

所以球的直径是
5
,半径为
5
2

∴三棱锥B-ADC的外接球的表面积为4π×(
5
2
)2=5π

故答案为:5π
点评:本题考查了外接球的表面积的度量,解题关键将三棱锥B-ACD的外接球扩展为长方体的外接球,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网