ÌâÄ¿ÄÚÈÝ
ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£¬ÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£¬ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£¬È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËû¿Õ¸ñ£®
£¨¢ñ£©ÉèµÚ2ÐеÄÊýÒÀ´ÎΪb1£¬b2£¬b3£¬¡£¬bn£¬ÊÔÓÃn¡¢q±íʾb1+b2+b3+¡+bnµÄÖµ£»
£¨¢ò£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬×ÜÓÐcm-1+cm+1£¾2cm³ÉÁ¢£¨ÆäÖÐ2¡Üm¡Ün-1ÇÒmΪżÊý£©£»
£¨¢ó£©ÄÜ·ñÕÒµ½Ò»¸öʵÊýqµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿Çë˵Ã÷ÀíÓÉ£®
µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚnÁÐ | |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ | q | ||||
µÚ3ÐÐ | q2 | ||||
¡ | ¡ | ||||
µÚnÐÐ | qn-1 |
£¨¢ò£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬×ÜÓÐcm-1+cm+1£¾2cm³ÉÁ¢£¨ÆäÖÐ2¡Üm¡Ün-1ÇÒmΪżÊý£©£»
£¨¢ó£©ÄÜ·ñÕÒµ½Ò»¸öʵÊýqµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ý¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔò£¬Ð´³öb1¡¢b2¡¢b3µÄ±í´ïʽ£¬´Ó¶ø¹éÄɳöbn=£¨n-1£©+q£¬ÀûÓõȲîÊýÁÐÇ°nÏîºÍ¹«Ê½¼´¿ÉËã³öÓÃn¡¢q±íʾb1+b2+b3+¡+bnµÄʽ×Ó£»
£¨2£©ÓÉÌâÒ⣬¸ù¾Ýc1¡¢c2¡¢c3µÄ±í´ïʽ£¬¹éÄɳöcnÓÃn¡¢q±íʾµÄʽ×Ó£®½«cm-1+cm+1Óë2cm×÷²î£¬»¯¼òÕûÀíµÃ cm-1+cm+1-2cm=qm£¾0£¬´Ó¶øµÃµ½¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬×ÜÓÐcm-1+cm+1£¾2cm³ÉÁ¢£»
£¨3£©ÈôµÚk+1ÁеÄÇ°ÈýÏî³ÉµÈ±ÈÊýÁУ¬ÔòÓɵȱÈÖÐÏîµÄ¶¨ÒåÁÐʽ¿É½â³öq=
£¬Í¬Àíµ±µÚm+1ÁеÄÇ°ÈýÏî³ÉµÈ±ÈÊýÁÐʱ£¬ÓÐq=
³ÉÁ¢£®ÓÉk¡Ùm¿ÉµÃÒÔÉÏÁ½¸öʽ×Ó²»ÄÜͬʱ³ÉÁ¢£¬Òò´ËÎÞÂÛÔõÑùµÄq¶¼²»ÄÜͬʱÕÒ³ö³ý1ÁÐÍâµÄÆäËûÁ½ÁУ¬Ê¹ËüÃǵÄÇ°ÈýÏ³ÉµÈ±ÈÊýÁУ®
£¨2£©ÓÉÌâÒ⣬¸ù¾Ýc1¡¢c2¡¢c3µÄ±í´ïʽ£¬¹éÄɳöcnÓÃn¡¢q±íʾµÄʽ×Ó£®½«cm-1+cm+1Óë2cm×÷²î£¬»¯¼òÕûÀíµÃ cm-1+cm+1-2cm=qm£¾0£¬´Ó¶øµÃµ½¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬×ÜÓÐcm-1+cm+1£¾2cm³ÉÁ¢£»
£¨3£©ÈôµÚk+1ÁеÄÇ°ÈýÏî³ÉµÈ±ÈÊýÁУ¬ÔòÓɵȱÈÖÐÏîµÄ¶¨ÒåÁÐʽ¿É½â³öq=
1-k |
2 |
1-m |
2 |
½â´ð£º½â£º£¨¢ñ£©¡ßb1=q£¬b2=1+q£¬b3=1+£¨1+q£©=2+q£¬¡£¬bn=£¨n-1£©+q
¡àb1+b2+¡+bn=1+2+¡+£¨n-1£©+nq=
+nq¡£¨3·Ö£©
£¨¢ò£©c1=1£¬c2=1+£¨1+q£©=2+q£¬c3=£¨2+q£©+£¨1+q+q2£©=3+2q+q2£¬¡£¬
cn=n+£¨n-1£©q+£¨ n-2£©q2+¡+2qn-2+qn-1£®
¡ßcm-1+cm+1-2cm=[£¨m-1£©+£¨m-2£©q+£¨m-3£©q2+¡+2qm-3+qm-2]+
[£¨m+1£©+mq+£¨m-1£©q2+¡+2qm-1+qm]-2[m+£¨m-1£©q+£¨m-2£©q2+¡+2qm-2+qm-1]=qm
¡à½áºÏqΪ·ÇÁãʵÊýÇÒmΪżÊý£¬¿ÉµÃqm£¾0£¬´Ó¶øµÃµ½cm-1+cm+1£¾2cm ¡£¨6·Ö£©
£¨¢ó£©Éèx1£¬x2£¬x3ºÍy1£¬y2£¬y3·Ö±ðΪµÚk+1Áк͵Úm+1ÁеÄÇ°ÈýÏ1¡Ük£¼m¡Ün-1£¬
Ôòx1=1£¬x2=k+q£¬x3=£¨1+2+¡+k£©+kq+q2=
+kq+q2
ÈôµÚk+1ÁеÄÇ°ÈýÏîx1£¬x2£¬x3ÊǵȱÈÊýÁУ¬Ôòx1x3=x22
¡à
+kq+q2=(k+q)2¼´
+kq=0£¬½âµÃq=
ͬÀí£¬ÈôµÚm+1ÁеÄÇ°ÈýÏîy1£¬y2£¬y3ÊǵȱÈÊýÁУ¬Ôòq=
¡ßµ±k¡Ùmʱ£¬
¡Ù
¡àÎÞÂÛÔõÑùµÄq£¬¶¼²»ÄÜͬʱÕÒ³ö³ý1ÁÐÍâµÄÆäËûÁ½ÁУ¬Ê¹ËüÃǵÄÇ°ÈýÏ³ÉµÈ±ÈÊýÁÐ ¡£¨10·Ö£©
¡àb1+b2+¡+bn=1+2+¡+£¨n-1£©+nq=
n(n-1) |
2 |
£¨¢ò£©c1=1£¬c2=1+£¨1+q£©=2+q£¬c3=£¨2+q£©+£¨1+q+q2£©=3+2q+q2£¬¡£¬
cn=n+£¨n-1£©q+£¨ n-2£©q2+¡+2qn-2+qn-1£®
¡ßcm-1+cm+1-2cm=[£¨m-1£©+£¨m-2£©q+£¨m-3£©q2+¡+2qm-3+qm-2]+
[£¨m+1£©+mq+£¨m-1£©q2+¡+2qm-1+qm]-2[m+£¨m-1£©q+£¨m-2£©q2+¡+2qm-2+qm-1]=qm
¡à½áºÏqΪ·ÇÁãʵÊýÇÒmΪżÊý£¬¿ÉµÃqm£¾0£¬´Ó¶øµÃµ½cm-1+cm+1£¾2cm ¡£¨6·Ö£©
£¨¢ó£©Éèx1£¬x2£¬x3ºÍy1£¬y2£¬y3·Ö±ðΪµÚk+1Áк͵Úm+1ÁеÄÇ°ÈýÏ1¡Ük£¼m¡Ün-1£¬
Ôòx1=1£¬x2=k+q£¬x3=£¨1+2+¡+k£©+kq+q2=
k(k+1) |
2 |
ÈôµÚk+1ÁеÄÇ°ÈýÏîx1£¬x2£¬x3ÊǵȱÈÊýÁУ¬Ôòx1x3=x22
¡à
k(k+1) |
2 |
k2-k |
2 |
1-k |
2 |
ͬÀí£¬ÈôµÚm+1ÁеÄÇ°ÈýÏîy1£¬y2£¬y3ÊǵȱÈÊýÁУ¬Ôòq=
1-m |
2 |
¡ßµ±k¡Ùmʱ£¬
1-k |
2 |
1-m |
2 |
¡àÎÞÂÛÔõÑùµÄq£¬¶¼²»ÄÜͬʱÕÒ³ö³ý1ÁÐÍâµÄÆäËûÁ½ÁУ¬Ê¹ËüÃǵÄÇ°ÈýÏ³ÉµÈ±ÈÊýÁÐ ¡£¨10·Ö£©
µãÆÀ£º±¾Ìâ¸ø³ö¹ØÓÚÊýÁеĶþά±í¸ñ£¬ÇóµÚ¶þÐеĵÚnÏîµÄͨÏʽ²¢ÇóÇ°nÏîºÍ£¬ÇóµÚÈýÁеÄͨÏîÂú×ãµÄÌõ¼þ²¢ÌÖÂÛµÚkÁеÄÇ°ÈýÏî³ÉµÈ±ÈµÄÎÊÌ⣮×ÅÖØ¿¼²éÁ˵ȱÈÊýÁеÄͨÏʽ¡¢Ç°nÏîºÍ¹«Ê½¡¢²»µÈʽµÄÖ¤Ã÷ÓëÊýÁеÄÓ¦ÓõÈ֪ʶµã£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
21.ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪµÄÊýÁÐÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ.
| µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚÁÐ |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ |
|
|
|
| |
µÚ3ÐÐ |
|
|
|
| |
¡ | ¡ |
|
|
|
|
µÚÐÐ |
|
|
|
|
(1) ÉèµÚ2ÐеÄÊýÒÀ´ÎΪ£¬ÊÔÓñíʾµÄÖµ£»
(2) ÉèµÚ3ÁеÄÊýÒÀ´ÎΪ£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊý£¬£»
(3) ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ (Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©.
¢Ù ÄÜ·ñÕÒµ½µÄÖµ£¬Ê¹µÃ(2) ÖеÄÊýÁеÄÇ°Ïî () ³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ.
¢Ú ÄÜ·ñÕÒµ½µÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ.
ÎÒÃÇÔÚÏÂÃæµÄ±í¸ñÄÚÌîдÊýÖµ£ºÏȽ«µÚ1ÐеÄËùÓпոñÌîÉÏ1£»ÔÙ°ÑÒ»¸öÊ×ÏîΪ1£¬¹«±ÈΪqµÄÊýÁÐ{an}ÒÀ´ÎÌîÈëµÚÒ»ÁеĿոñÄÚ£»È»ºó°´ÕÕ¡°ÈÎÒâÒ»¸ñµÄÊýÊÇËüÉÏÃæÒ»¸ñµÄÊýÓëËü×ó±ßÒ»¸ñµÄÊýÖ®ºÍ¡±µÄ¹æÔòÌîдÆäËü¿Õ¸ñ£®
£¨1£©ÉèµÚ2ÐеÄÊýÒÀ´ÎΪB1£¬B2£¬¡£¬Bn£¬ÊÔÓÃn£¬q±íʾB1+B2+¡+BnµÄÖµ£»
£¨2£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬c1+c3£¾2c2£»
£¨3£©ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ £¨Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©£®
¢ÙÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃ£¨2£©ÖеÄÊýÁÐc1£¬c2£¬c3£¬¡£¬cnµÄÇ°mÏîc1£¬c2£¬¡£¬cm £¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
¢ÚÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®
µÚ1ÁÐ | µÚ2ÁÐ | µÚ3ÁÐ | ¡ | µÚnÁÐ | |
µÚ1ÐÐ | 1 | 1 | 1 | ¡ | 1 |
µÚ2ÐÐ | q | ||||
µÚ3ÐÐ | q2 | ||||
¡ | ¡ | ||||
µÚnÐÐ | qn-1 |
£¨2£©ÉèµÚ3ÁеÄÊýÒÀ´ÎΪc1£¬c2£¬c3£¬¡£¬cn£¬ÇóÖ¤£º¶ÔÓÚÈÎÒâ·ÇÁãʵÊýq£¬c1+c3£¾2c2£»
£¨3£©ÇëÔÚÒÔÏÂÁ½¸öÎÊÌâÖÐÑ¡ÔñÒ»¸ö½øÐÐÑо¿ £¨Ö»ÄÜÑ¡ÔñÒ»¸öÎÊÌ⣬Èç¹û¶¼Ñ¡£¬±»ÈÏΪѡÔñÁ˵ÚÒ»ÎÊ£©£®
¢ÙÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃ£¨2£©ÖеÄÊýÁÐc1£¬c2£¬c3£¬¡£¬cnµÄÇ°mÏîc1£¬c2£¬¡£¬cm £¨m¡Ý3£©³ÉΪµÈ±ÈÊýÁУ¿ÈôÄÜÕÒµ½£¬mµÄÖµÓжàÉÙ¸ö£¿Èô²»ÄÜÕÒµ½£¬ËµÃ÷ÀíÓÉ£®
¢ÚÄÜ·ñÕÒµ½qµÄÖµ£¬Ê¹µÃÌîÍê±í¸ñºó£¬³ýµÚ1ÁÐÍ⣬»¹Óв»Í¬µÄÁ½ÁÐÊýµÄÇ°ÈýÏî¸÷×ÔÒÀ´Î³ÉµÈ±ÈÊýÁУ¿²¢ËµÃ÷ÀíÓÉ£®