题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201301/16/9a9f0f5f.png)
(1)当AA1=AB=AC时,求证:A1C⊥平面ABC1;
(2)试求三棱锥P-BCC1的体积V取得最大值时的t值.
分析:(1)先证明AC1⊥A1C,再证明AB⊥平面AA1C1C,可得AB⊥AC1,利用线面垂直的判定定理,可得结论;
(2)确定点P到平面BB1C1C的距离等于点A到平面BB1C1C的距离,表示出三棱锥P-BCC1的体积,利用导数方法求最值.
(2)确定点P到平面BB1C1C的距离等于点A到平面BB1C1C的距离,表示出三棱锥P-BCC1的体积,利用导数方法求最值.
解答:
(1)证明:∵AA1⊥面ABC,∴AA1⊥AC,AA1⊥AB
又∵AA1=AC,∴四边形AA1C1C是正方形,∴AC1⊥A1C.
∵AB⊥AC,AB⊥AA1,AA1,AC?平面AA1C1C,AA1∩AC=A,
∴AB⊥平面AA1C1C.
又∵AC1?平面AA1C1C,
∴AB⊥AC1,
∵AB,AC1?平面ABC1,AB∩AC1=A
∴A1C⊥平面ABC1.---(5分)
(2)解:∵AA1∥平面BB1C1C,∴点P到平面BB1C1C的距离等于点A到平面BB1C1C的距离
∴V=VP-BCC1=VA-BCC1=VC1-ABC=
t2(3-2t)=
t2-
t3(0<t<
),----(9分)
V'=-t(t-1),令V'=0,得t=0(舍去)或t=1,列表,得
∴当t=1时,Vmax=
.---(12分)
![](http://thumb.zyjl.cn/pic3/upload/images/201301/16/48f7761a.png)
又∵AA1=AC,∴四边形AA1C1C是正方形,∴AC1⊥A1C.
∵AB⊥AC,AB⊥AA1,AA1,AC?平面AA1C1C,AA1∩AC=A,
∴AB⊥平面AA1C1C.
又∵AC1?平面AA1C1C,
∴AB⊥AC1,
∵AB,AC1?平面ABC1,AB∩AC1=A
∴A1C⊥平面ABC1.---(5分)
(2)解:∵AA1∥平面BB1C1C,∴点P到平面BB1C1C的距离等于点A到平面BB1C1C的距离
∴V=VP-BCC1=VA-BCC1=VC1-ABC=
1 |
6 |
1 |
2 |
1 |
3 |
3 |
2 |
V'=-t(t-1),令V'=0,得t=0(舍去)或t=1,列表,得
t | (0,1) | 1 | (1,
| ||
V' | + | 0 | - | ||
V | 递增 | 极大值 | 递减 |
1 |
6 |
点评:本小题主要考查线面垂直,考查三棱锥的体积,考查化归与转化思想、数形结合思想、函数与方程思想及应用意识.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目