题目内容
已知为虚数单位,为实数,复数在复平面内对应的点为,则“”是“点在第四象限”的
A.充分而不必要条件 | B.必要而不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
A
解析试题分析:根据题意,由于复数在复平面内对应的点为表示的点坐标为(2,-a),那么可知当a<-2时,则可知前者是后者的充分不必要条件,故选A
考点:复数的代数表示法及其几何意义
点评:本题考查复数的代数表示法及其几何意义,考查复数与复平面上的点的对应关系,考查不等式的解法,本题是一个基础题,注意要从两个方向验证条件是什么条件.
练习册系列答案
相关题目
设,则“”是“直线与直线平行”的 ( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
在四边形中,“,使得”是“四边形为平行四边形”的( )
A.充分而不必要条件 | B.必要而不充分条件 | C.充分必要条件 | D.既不充分也不必要条件 |
下列四个命题中,正确的是( )
A.已知服从正态分布,且,则 |
B.已知命题;命题.则命题“”是假命题 |
C.设回归直线方程为,当变量增加一个单位时,平均增加2个单位 |
D.已知直线,,则的充要条件是=-3 |
下列命题中,为真命题的是( )
A. |
B. |
C. |
D. |
设R,则“”是“”( )
A.充分而不必要条件 | B.必要而不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
给出下面四个命题:
(1)如果直线,那么可以确定一个平面;(2)如果直线和都与直线相交,那么可以确定一个平面;(3)如果那么可以确定一个平面;(4)直线过平面内一点与平面外一点,直线在平面内不经过该点,那么和是异面直线。上述命题中,真命题的个数是( )
A.1个; | B.2个; | C.3个; | D.4个。 |
设, 则 “”是“”的( )
A.充分而不必要条件 |
B.必要而不充分条件 |
C.充要条件 |
D.既不充分也不必要条件 |
给定两个命题,的必要而不充分条件,则的( )
A.充分而不必要条件 | B.必要而不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |