题目内容

要使直线y=kx+1(k∈R)与焦点在x轴上的椭圆
x2
7
+
y2
a
=1总有公共点,实数a的取值范围是
[1,7)
[1,7)
分析:由方程
x2
7
+
y2
a
=1表示焦点在x轴上的椭圆得出a的取值上限,再根据直线过定点(0,1),由直线y=kx+1(k∈R)与椭圆
x2
7
+
y2
a
=1总有公共点得出a的最小值.
解答:解:要使方程
x2
7
+
y2
a
=1表示焦点在x轴上的椭圆,需a<7,
由直线y=kx+1(k∈R)恒过定点(0,1),
所以要使直线y=kx+1(k∈R)与椭圆
x2
7
+
y2
a
=1总有公共点,
则(0,1)应在椭圆上或其内部,即a>1,
所以实数a的取值范围是[1,7).
故答案为[1,7).
点评:本题考查了椭圆的简单几何性质,考查了直线和圆锥曲线的关系,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网