题目内容

渐近线是2x-
3
y=0和2x+
3
y=0且过点(6,6),则双曲线的标准方程是(  )
A、
x2
3
-
y2
4
=1
B、
y2
4
-
x2
3
=1
C、
x2
9
-
y2
12
=1
D、
y2
16
-
x2
16
=1
分析:根据双曲线的方程与双曲线的渐近线的方程的关系,设出双曲线方程,将已知的点代入,求出双曲线的方程.
解答:解:∵渐近线是2x±
3
y=0

设双曲线方程为(2x+
3
y)(2x-
3
y)=λ(λ≠0)

即4x2-3y2
将(6,6)代入得4×36-3×36=λ
∴λ=36
∴双曲线的标准方程是
x2
9
-
y2
12
=1

故选C
点评:求圆锥曲线的方程一般利用待定系数方法,已知渐近线的方程为ax±by=0 则双曲线的方程为(ax+by)(ax-by)=λ(λ≠0)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网