题目内容
14、设g(x) 是定义在R 上,以1为周期的函数,若函数f(x)=x+g(x) 在区间[0,1]上的值域为[-2,5],则f(x) 在区间[0,3]上的值域为
[-2,7]
.分析:先根据g(x) 是定义在R 上,以1为周期的函数,令x+1=t进而可求函数在[1,2]时的值域,再令x+2=t可求函数在[2,3]时的值域,最后求出它们的并集即得(x) 在区间[0,3]上的值域.
解答:解:g(x)为R上周期为1的函数,则g(x)=g(x+1)
函数f(x)=x+g(x)在区间[0,1]【正好是一个周期区间长度】的值域是[-2,5]
令x+1=t,当x∈[0,1]时,t=x+1∈[1,2]
此时,f(t)=t+g(t)=(x+1)+g(x+1)=(x+1)+g(x)
=[x+g(x)]+1
所以,在t∈[1,2]时,f(t)∈[-1,6]…(1)
同理,令x+2=t,在当x∈[0,1]时,t=x+2∈[2,3]
此时,f(t)=t+g(t)=(x+2)+g(x+2)=(x+2)+g(x)
=[x+g(x)]+2
所以,当t∈[2,3]时,f(t)∈[0,7]…(2)
由已知条件及(1)(2)得到,f(x)在区间[0,3]上的值域为[-2,7]
故答案为:[-2,7].
函数f(x)=x+g(x)在区间[0,1]【正好是一个周期区间长度】的值域是[-2,5]
令x+1=t,当x∈[0,1]时,t=x+1∈[1,2]
此时,f(t)=t+g(t)=(x+1)+g(x+1)=(x+1)+g(x)
=[x+g(x)]+1
所以,在t∈[1,2]时,f(t)∈[-1,6]…(1)
同理,令x+2=t,在当x∈[0,1]时,t=x+2∈[2,3]
此时,f(t)=t+g(t)=(x+2)+g(x+2)=(x+2)+g(x)
=[x+g(x)]+2
所以,当t∈[2,3]时,f(t)∈[0,7]…(2)
由已知条件及(1)(2)得到,f(x)在区间[0,3]上的值域为[-2,7]
故答案为:[-2,7].
点评:本题主要考查了函数的值域、函数的周期性.考查函数的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目
设g(x)是定义在R上,以1为周期的函数,若f(x)=x+g(x)在[0,1]上的值域为[-2,5],则f(x)在区间[0,3]上的值域为( )
A、[-2,7] | B、[-2,5] | C、[0,8] | D、[-3,7] |