题目内容
已知函数f(x)=2x |
x+2 |
4 |
3 |
(1)求证数列{
1 |
an |
(2)记Sn=a1a2+a2a3+…+anan+1,求证:Sn<
8 |
3 |
分析:(1)根据an+1=f(an).整理得
-
=
.进而可推断{
]成等差数列.最后根等差数列的通项公式求得数列{an}的通项公式.
(2)首先对数列anan+1的通项公式进行裂项,进而叠加求得Sn=8(
-
).根据
-
<
进而可推断Sn<
1 |
an+1 |
1 |
an |
1 |
2 |
1 |
an |
(2)首先对数列anan+1的通项公式进行裂项,进而叠加求得Sn=8(
1 |
3 |
1 |
2n+3 |
1 |
3 |
1 |
2n+3 |
1 |
3 |
8 |
3 |
解答:解:(1)∵an+1=f(an)=
,
∴
=
+
,即
-
=
.
∴{
]成等差数列.
∴
=
+(n+1)×
=
+(n-1)×
=
.即an=
.
(2)∵anan+1=
•
=8(
-
),
∴Sn=a1a2+a2a3++anan-1=8(
-
+
-
++
-
)=8(
-
)<
.
2an |
an+2 |
∴
1 |
an+1 |
1 |
an |
1 |
2 |
1 |
an+1 |
1 |
an |
1 |
2 |
∴{
1 |
an |
∴
1 |
an |
1 |
a1 |
1 |
2 |
3 |
4 |
1 |
2 |
2n+1 |
4 |
4 |
2n+1 |
(2)∵anan+1=
4 |
2n+1 |
4 |
2n+3 |
1 |
2n+1 |
1 |
2n+3 |
∴Sn=a1a2+a2a3++anan-1=8(
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
2n+1 |
1 |
2n+3 |
1 |
3 |
1 |
2n+3 |
8 |
3 |
点评:本题主要考查了数列的递推式,对于分母是数列相邻两项构成的数列,常可用裂项法求和.
练习册系列答案
相关题目