题目内容
已知函数在点处的切线方程为,且对任意的,恒成立.
(Ⅰ)求函数的解析式;
(Ⅱ)求实数的最小值;
(Ⅲ)求证:().
【答案】
(Ⅰ) (Ⅱ)
(Ⅲ)先证,累加即得.
【解析】
试题分析:(Ⅰ)将代入直线方程得,∴①
,∴②
联立,解得∴
(Ⅱ),∴在上恒成立;
即在恒成立;
设,,
∴只需证对于任意的有
设,
1)当,即时,,∴
在单调递增,∴
2)当,即时,设是方程的两根且
由,可知,分析题意可知当时对任意有;
∴,∴
综上分析,实数的最小值为.
(Ⅲ)令,有即在恒成立;
令,得
∴原不等式得证.
考点:利用导数研究曲线上某点切线方程;函数解析式的求解及常用方法;不等式的证明.
点评:本题考查了利用导数研究函数的切线方程问题,在曲线上某点处的切线的斜率就是该点的导数值,考查了导数在最大值和最小值中的应用,体现了数学转化思想和分类讨论的数学思想.特别是(Ⅲ)的证明,用到了放缩法和裂项相消,此题属难度较大的题目.
练习册系列答案
相关题目