题目内容
【题目】过双曲线的右焦点作直线,且直线与双曲线的一条渐近线垂直,垂足为,直线与另一条渐近线交于点,已知为坐标原点,若的内切圆的半径为,则双曲线的离心率为( )
A.B.C.D.或2
【答案】D
【解析】
分在轴同侧和在轴异侧两种情况进行求解:不妨设在第一象限,根据题意作出图形,利用图形中的几何关系求出的值,再由离心率求解即可.
有两种情况:
(1)若在轴同侧,不妨设在第一象限.如图,
设内切圆的圆心为,则在的平分线上,
过点分别作于,于,
由得四边形为正方形,利用点到直线的距离公式可得,
焦点到渐近线的距离为,
又,所以,
又,
所以,
所以,
从而可得离心率;
(2)若在轴异侧,不妨设在第一象限如图,
易知,,,
因为的内切圆半径为,
所以,
又因为,
所以,,
所以,,
则,
从而可得离心率.
综上,双曲线的离心率为或2.
故选:D
练习册系列答案
相关题目
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,居民用水原则上以住宅为单位(一套住宅为一户).
阶梯级别 | 第一阶梯 | 第二阶梯 | 第三阶梯 |
月用水范围(吨) |
为了了解全市居民月用水量的分布情况,通过抽样,获得了户居民的月用水量(单位:吨),得到统计表如下:
居民用水户编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用水量(吨) | 7 | 8 | 8 | 9 | 10 | 11 | <>13 | 14 | 15 | 20 |
(1)若用水量不超过吨时,按元/吨计算水费;若用水量超过吨且不超过吨时,超过吨部分按元/吨计算水费;若用水量超过吨时,超过吨部分按元/吨计算水费.试计算:若某居民用水吨,则应交水费多少元?
(2)现要在这户家庭中任意选取户,求取到第二阶梯水量的户数的分布列与期望;
(3)用抽到的户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取户,若抽到户月用水量为第一阶梯的可能性最大,求的值.