题目内容
(本小题满分12分)
某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求成绩落在[70,80)上的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格);
(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.
(1)略(2)75%(3)
解析试题分析:解:(1)因为各组的频率和等于1,
故第四组的频率为1-(0.025 + 0.01×52 +
0.01 + 0.005)×10 = 0.3 ………2分
直方图如下图所示: …………4分
(2)依题意,60及以上的分数所在的
第三、四、五、六组,频率和为(0.015+ 0.03
+ 0.025 + 0.005)×10 = 0.75
所以,抽样学生成绩的合格率是75% …8分
(3)[60,70),[70,80),[80,90),[90,100]”的人数是9,18,15,3.所以从成绩是(60分)以上(包括60分)的学生中选一人,该生是优秀生的概率是
…………12分
考点:频率分布直方图;概率。
点评:此类题跟实际问题联系较紧密,因而常成为考点。又因为题目是基础题,所以务必做好。
某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
组号 | 分组 | 频数 | 频率 |
第一组 | 8 | 0.16 | |
第二组 | ① | 0.24 | |
第三组 | 15 | ② | |
第四组 | 10 | 0.20 | |
第五组 | 5 | 0.10 | |
合 计 | 50 | 1.00 |
(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;
(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
某市居民1999~2003年货币收入与购买商品支出的统计资料如下表所示:单位:亿元
年份 | 1999 | 2000 | 2001 | 2002 | 2003 |
货币收入 | 40 | 42 | 44 | 47 | 50 |
购买商品支出 | 33 | 34 | 36 | 39 | 41 |
(Ⅱ)已知,请写出Y对x的回归直 线方程,并估计货币收入为52(亿元)时,购买商品支出大致为多少亿元?
(本题满分12分)
对某校高二年级学生参加社会实践活动次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社会实践活动的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
26 | n | |
| m | P |
| 1 | 0.025 |
合计 | M | 1 |
(Ⅰ)求出表中M,P及图中的值;
(Ⅱ)在所取样本中,从参加社会实践活动的次数不少于20次的学生中任选2人,求恰有一人参加社会实践活动次数在区间内的概率.
(本小题满分12分)某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工.
(1)求每个报名者能被聘用的概率;
(2)随机调查了24名笔试者的成绩如下表所示:
分数段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) |
人数 | 1 | 2 | 6 | 9 | 5 | 1 |
(3)公司从聘用的四男、、、和二女、中选派两人参加某项培训,则选派结果为一男一女的概率是多少?
某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。
(相关公式:)
电视传媒公司为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料判断是否有95%的把握认为“体育迷”与性别有关?
| 非体育迷 | 体育迷 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
附:K2=,其中n=a+b+c+d.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
(本题满分10分)对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组 | 频数 | 频率 |
10 | 0.25 | |
24 | ||
| ||
| 2 | 0.05 |
合计 | 1 |
(Ⅰ)求出表中及图中的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2) 试预测加工10个零件需要多少时间?