题目内容
如图所示为二次函数f(x)的图象,已知-1<x1<x2<2,那么(x1+1)f(x2)-(x2+1)f(x1)为( )
分析:由图设f(x)=a(x+1)(x-2)且a>0,求出f(x1)和f(x2),代入(x1+1)﹒f(x2)-(x2+1)﹒f(x1)化简,再由已知的范围判断出各个因式的符号即可.
解答:解:由图设f(x)=a(x+1)(x-2),(a>0)
则f(x1)=a(x1+1)(x1-2),f(x2)=a(x2+1)(x2-2),
∴(x1+1)﹒f(x2)-(x2+1)﹒f(x1)
=(x1+1)﹒a(x2+1)(x2-2)-(x2+1)﹒a(x1+1)(x1-2)
=a(x1+1)(x2+1)[(x2-2)-(x1-2)]
=a(x1+1)(x2+1)(x2-x1)
∵-1<x1<x2<2,∴x1+1>0,x2+1>0,x2-x1>0,
又a>0,则a(x1+1)(x2+1)(x2-x1)>0,
∴(x1+1)﹒f(x2)-(x2+1)﹒f(x1)>0,
故选A.
则f(x1)=a(x1+1)(x1-2),f(x2)=a(x2+1)(x2-2),
∴(x1+1)﹒f(x2)-(x2+1)﹒f(x1)
=(x1+1)﹒a(x2+1)(x2-2)-(x2+1)﹒a(x1+1)(x1-2)
=a(x1+1)(x2+1)[(x2-2)-(x1-2)]
=a(x1+1)(x2+1)(x2-x1)
∵-1<x1<x2<2,∴x1+1>0,x2+1>0,x2-x1>0,
又a>0,则a(x1+1)(x2+1)(x2-x1)>0,
∴(x1+1)﹒f(x2)-(x2+1)﹒f(x1)>0,
故选A.
点评:本题考查了二次函数解析式的两根式,以及式子的化简,判断符号等,属于基础题.
练习册系列答案
相关题目