题目内容
【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.
【答案】
(1)解:∵曲线C的极坐标方程为ρsin2α﹣2cosα=0,
∴ρ2sin2α=2ρcosα,
∴曲线C的直角坐标方程为y2=2x.
(2)解:直线l的参数方程 ,(t为参数,0<θ<π),
把直线的参数方程化入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,
设A,B两点对应的参数分别为t1,t2,
则 ,t1t2=﹣ ,
|AB|=|t1﹣t2|=
= = ,
∴当 时,|AB|取最小值2.
【解析】(1)曲线C的极坐标方程转化为ρ2sin2α=2ρcosα,由此能求出曲线C的直角坐标方程.(2)把直线的参数方程化入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,设A,B两点对应的参数分别为t1,t2,则|AB|=|t1﹣t2|= ,由此能求出当 时,|AB|取最小值2.
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
(1)完成2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(K2= ,其中n=a+b+c+d)
(2)为了改良玉米品种,现采用分层抽样的方法从抗倒伏的玉米中抽出5株,再从这5株玉米中选取2株进行杂交试验,选取的植株均为矮茎的概率是多少?