题目内容
已知a1=1,an+1=
-
,bn=
,则数列{bn}的通项公式bn=
5 |
2 |
1 |
an |
1 |
an-2 |
-
×22n-2-
1 |
3 |
2 |
3 |
-
×22n-2-
.1 |
3 |
2 |
3 |
分析:有已知条件推出
是等比数列,求出通项公式,然后求出an的通项公式,最后求解数列{bn}的通项公式bn.
an-2 | ||
an-
|
解答:解:∵a1=1,an+1=
-
∴2an+1an=5an-2,所以 2(an+1-2)an=5an-2-4an=an-2,
2(an+1-
)an=5an-2-an=4(an-
)
两式相除:
=
设cn=
,c1=
=-2,cn+1=
cn,
数列{cn}是等比数列,
cn=c1•(
)n-1=-2•2-2n+2=-2-2n+3.
所以,
=-2-2n+3.
即an-2=-(an-
)•2-2n+3=-an2-2n+3+2-2n+2
an(1+2-2n+3)=2-2n+2+2
解得an=
,
∴an-2=
-2
=
=
=-
所以bn=
=-
×
=-
×
=-
[22n-2+2]
=-
×22n-2-
.
故答案为:-
×22n-2-
.
5 |
2 |
1 |
an |
∴2an+1an=5an-2,所以 2(an+1-2)an=5an-2-4an=an-2,
2(an+1-
1 |
2 |
1 |
2 |
两式相除:
an+1-2 | ||
an+1-
|
an-2 | ||
4(an-
|
设cn=
an-2 | ||
an-
|
a1-2 | ||
a1-
|
1 |
4 |
数列{cn}是等比数列,
cn=c1•(
1 |
4 |
所以,
an-2 | ||
an-
|
即an-2=-(an-
1 |
2 |
an(1+2-2n+3)=2-2n+2+2
解得an=
2-2n+2+2 |
1+2-2n+3 |
∴an-2=
2-2n+2+2 |
1+2-2n+3 |
=
2-2n+2-2-2n+4 |
1+2-2n+3 |
=
2-2n+2-4×2-2n+2 |
1+2-2n+3 |
=-
3×2-2n+2 |
1+2-2n+3 |
所以bn=
1 |
an-2 |
1 |
3 |
1+2-2n+3 |
2-2n+2 |
=-
1 |
3 |
1+2×2-2n+2 |
2-2n+2 |
=-
1 |
3 |
=-
1 |
3 |
2 |
3 |
故答案为:-
1 |
3 |
2 |
3 |
点评:本题考查数列通项公式的求法,构造法的应用,考查转化思想,计算能力.
练习册系列答案
相关题目