题目内容

设数列{an}的首项a1=a≠
1
4
,且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,记bn=a2n-1-
1
4
cn=
sinn
|sinn|
bn
,n∈N*
(1)求a2,a3
(2)判断数列{bn}是否为等比数列,并证明你的结论;
(3)当a>
1
4
时,数列{cn}前n项和为Sn,求Sn最值.
分析:(I)由且an+1=
1
2
an
(n为偶数)
an+
1
4
(n为奇数)
,n∈N*,求解可得a2=a+
1
4
,a3=
1
2
(a+
1
4
).
(II)由记bn=a2n-1-
1
4
,可推知bn=a2n-1-
1
4
=
1
2
(a2n-3+
1
4
)-
1
4
=
1
2
(a2n-3-
1
4
)=
1
2
bn-1,又因为b1=a1-
1
4
=a-
1
4
≠0由等比数列的定义可知数列{bn}为等比数列.
(III)当a>
1
4
时,{bn}为正项等比数列,可由bn+1+bn+2+bn+…+bn+m=bn+1
1-(
1
2
)
m
1-
1
2
<2bn+1=bn,当n≥4时,sn-s3=-b4-b5+…+
sinn
|sinn|
bn
,从而有sn-s3<b2-b3-b4-…-bn<0同理,可得sn-s1=b2+b3-b4-b5+…+
sinn
|sinn|
bn>0
,可推知:当n≥4,s1<sn<s3,s1<s2<s3从而得到结论.
解答:解:(I)a2=a+
1
4
,a3=
1
2
(a+
1
4

(II)∵bn=a2n-1-
1
4
=
1
2
(a2n-3+
1
4
)-
1
4
=
1
2
(a2n-3-
1
4
)=
1
2
bn-1
∵b1=a1-
1
4
=a-
1
4
≠0
{bn}\为
1
2
的等比数列
(III)当a>
1
4
时,
∵{bn}为正项等比数列,
∴bn+1+bn+2+bn+…+bn+m=bn+1
1-(
1
2
)
m
1-
1
2
<2bn+1=bn
当n≥4时,sn-s3=-b4-b5+…+
sinn
|sinn|
bn<b2-b3-b4-…-bn<0
sn-s1=b2+b3-b4-b5+…+
sinn
|sinn|
bn>b2-b3-b4-…-bn>0
当n≥4,s1<sn<s3,s1<s2<s3
故sn的最大值为s3=
7
4
(a+
1
4
),最小值为s1=a+
1
4
点评:本题主要考查数列的定义,通项及前n项和,还考查了数列的构造及前n项和的最值问题.难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网