题目内容
设n为正整数,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(8)>,f(16)>3,观察上述结果,可推测一般的结论为 .
f(2n)≥(n∈N*)
解析
观察下列各式:则___________.
用数学归纳法证明“当n为正偶数时xn-yn能被x+y整除”第一步应验证n=________时,命题成立;第二步归纳假设成立应写成____.
用反证法证明命题:“若a,b∈R,且a2+|b|=0,则a,b全为0”时,应假设为________.
观察下列等式:(1+1)=2×1,(2+1)(2+2)=22×1×3,(3+1)(3+2)(3+3)=23×1×3×5,……照此规律,第n个等式可为 .
某地区为了绿化环境进行大面积植树造林,如图,在区域内植树,第一棵树在点Al(0,1),第二棵树在点.B1(l,l),第三棵树在点C1(1,0),第四棵树在点C2(2,0),接着按图中箭头方向每隔一个单位种一棵树,那么(1)第n棵树所在点坐标是(44,0),则n= .(2)第2014棵树所在点的坐标是 .
如图,在圆内:画1条弦,把圆分成2部分;画2条相交的弦,把圆分成4部分,画3条两两相交的弦,把圆最多分成7部分;…,画条两两相交的弦,把圆最多分成 部分.
已知=2,=3,=4,…,若=7,(a,t均为正实数),则类比以上等式,可推测a、t的值,a+t= .
根据下面一组等式:S1=1;S2=2+3=5;S3=4+5+6=15;S4=7+8+9+10=34;S5=11+12+13+14+15=65;S6=16+17+18+19+20+21=111;S7=22+23+24+25+26+27+28=175;……可得S1+S3+S5+…+S2n-1=________.