题目内容
【题目】已知关于的不等式 的解集为.
(1)若,求的取值范围;
(2)若存在两个不相等负实数,使得,求实数的取值范围;
(3)若恰有三个整数、、在集合中,求的取值范围.
【答案】(1);(2);(3)
【解析】
(1)根据解集,分为和进行讨论,分别得到的范围,得到答案;(2)根据解集,可得,根据为两个不相等负实数,得到,根据韦达定理,得到的不等式,解出的范围,得到答案;(3)根据解集中恰有个整数,得到,设并判断出满足题意,根据对称性得到也满足,则要求时,,从而得到关于的不等式,解出的范围,得到答案.
(1)不等式,其解集
①当时,恒成立,符合题意;
②当时,则,即
解得
综上所述:
(2)因为不等式的解集为,
且为两个不相等负实数,
可得,即
解得
综上可得,.
(3)解集中恰有个整数,可得
设,开口向下,对称轴为,
可得,
可知解集中的三个整数一定有和,
根据二次函数的对称性得到,还有一个整数一定为,
此时已满足解集中恰有三个整数,则要求
,即
解得
【题目】新高考最大的特点就是取消文理分科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全文(选择政治、历史、地理)的选择是否与性别有关,从某学校高一年级的1000名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全文的人数比不选全文的人数少10人.
(1)估计在男生中,选择全文的概率.
(2)请完成下面的列联表;并估计有多大把握认为选择全文与性别有关,并说明理由;
选择全文 | 不选择全文 | 合计 | |
男生 | 5 | ||
女生 | |||
合计 |
附:,其中.
P() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
【题目】微信已成为人们常用的社交软件,“微信运动”是由腾讯开发的一个类似计步数据库的公众账号.手机用户可以通过关注“微信运动”公众号查看自己每天行走的步数,同时也可以和好友进行运动量的PK或点赞.现从小明的微信朋友圈内随机选取了50人(男、女各25人),并记录了他们某一天的走路步数,并将数据整理如下表:
步数 性别 | 0~3000 | 3001~6000 | 6001~9000 | 9001~12000 | >12000 |
男 | 1 | 1 | 3 | 15 | 5 |
女 | 0 | 4 | 11 | 8 | 2 |
若某人一天走路的步数超过9000步被系统评定为“积极型”,否则被系统评定为“懈怠型”。
(1)利用样本估计总体的思想,估计小明的所有微信好友中每日走路步数超过12000步的概率;
(2)根据题意完成下面的2×2列联表,并据此判断能否有99.5%的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:,其中.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |