题目内容

已知集合A={a1a2,…,an}(0≤a1a2<…<an,n∈N*,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),ai+aj与aj-ai至少一个属于A.
(1)分别判断集合M={0,2,4}与N={1,2,3}是否具有性质P,并说明理由;
(2)研究当n=3,4和5时,具有性质P的集合A中的数列{an}是否一定成等差数列.
分析:(1)利用新定义,可以判断集合M={0,2,4}具有性质P,N={1,2,3}不具有性质P;
(2)确定a1=0,再利用新定义,即可判断具有性质P的集合A中的数列{an}是否一定成等差数列.
解答:解:(1)集合M={0,2,4}具有性质P,N={1,2,3}不具有性质P.
∵集合M={0,2,4}中,aj+ai与aj-ai(1≤i≤j≤2)两数中都是该数列中的项,4-2是该数列中的项,∴集合M={0,2,4}具有性质P;
N={1,2,3}中,3在此集合中,则由题意得3+3和3-3至少一个一定在,而3+3=6不在,所以3-3=0一定是这个集合的元素,而此集合没有0,故不具有性质P;
(2)若数列A具有性质P,则an+an=2an与an-an=0两数中至少有一个是该数列中的一项,
∵0≤a1<a2<…<an,n≥3,而2an不是该数列中的项,∴0是该数列中的项,
∴a1=0;
n=3时,∵数列a1,a2,a3具有性质P,0≤a1<a2<a3
∴a2+a3与a3-a2至少有一个是该数列中的一项,
∵a1=0,a2+a3不是该数列的项,∴a3-a2=a2,∴a1+a3=2a2,数列{an}一定成等差数列;
n=4时,∵数列a1,a2,a3,a4具有性质P,0≤a1<a2<a3<a4
∴a3+a4与a4-a3至少有一个是该数列中的一项,
∵a3+a4不是该数列的项,∴a4-a3=a2,或a4-a3=a3
若a4-a3=a2,则数列{an}一定成等差数列;若a4-a3=a3,则数列{an}不一定成等差数列;
n=5时,∵数列a1,a2,a3,a4,a5有性质P,0≤a1<a2<a3<a4<a5
∴a4+a5与a5-a4至少有一个是该数列中的一项,
∵a4+a5不是该数列的项,∴a5-a4=a2,或a5-a4=a3,或a5-a4=a4
若a5-a4=a4,a4-a3=a2,则数列{an}一定成等差数列;若a5-a4=a2,或a5-a4=a3,则数列{an}不一定成等差数列.
点评:本题考查数列的综合应用,考查学生的应用知识分析、解决问题的能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网