题目内容

已知函数f(x)=x+
t
x
(t>0)
和点P(1,0),过点P作曲线y=f(x)的两条切线PM、PN,切点分别为M、N.
(Ⅰ)设|MN|=g(t),试求函数g(t)的表达式;
(Ⅱ)是否存在t,使得M、N与A(0,1)三点共线.若存在,求出t的值;若不存在,请说明理由.
(Ⅲ)在(Ⅰ)的条件下,若对任意的正整数n,在区间[2,n+
64
n
]
内总存在m+1个实数a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.
分析:(I)设出M、N两点的横坐标分别为x1、x2,对函数求导得到切线的斜率,写出切线的方程,根据切线过一个点,得到一个方程,根据根与系数的关系写出两点之间的长度,得到函数的表示式.
(II)根据三点共线写出其中两点连线的斜率相等,整理出最简单形式,把上一问做出的结果代入,求出t的值.
(III)根据前面做出的函数只一个增函数,写出不同的自变量对应的函数值的不等关系,根据对于任意的正整数都成立,得到m的取值范围,得到最值.
解答:解:(Ⅰ)设M、N两点的横坐标分别为x1、x2
f′(x)=1-
t
x2

∴切线PM的方程为:y-(x1+
t
x1
)=(1-
t
x12
)(x-x1)

又∵切线PM过点P(1,0),∴有0-(x1+
t
x1
)=(1-
t
x12
)(1-x1)

即x12+2tx1-t=0,(1)
同理,由切线PN也过点P(1,0),得x22+2tx2-t=0.(2)
由(1)、(2),可得x1,x2是方程x2+2tx-t=0的两根,∴
x1+x2=-2t
x1x2=-t.
(*)|MN|=
(x1-x2)2+(x1+
t
x1
-x2-
t
x2
)
2

=
[(x1+x2)2-4x1x2][1+(1-
t
x1x2
)
2
]

把(*)式代入,得|MN|=
20t2+20t

因此,函数g(t)的表达式为g(t)=
20t2+20t
(t>0)

(Ⅱ)当点M、N与A共线时,kMA=kNA
x1+
t
x1
-1
x1-0
=
x2+
t
x2
-1
x2-0
,即
x12+t-x1
x12
=
x22+t-x2
x22

化简,得(x2-x1)[t(x2+x1)-x1x2]=0
∵x1≠x2,∴t(x2+x1)=x2x1.(3)
把(*)式代入(3),解得t=
1
2

∴存在t,使得点M、N与A三点共线,且t=
1
2

(Ⅲ)知g(t)在区间[2 , n+
64
n
]
上为增函数,
g(2)≤g(ai)≤g(n+
64
n
)
(i=1,2,,m+1),
m•g(2)≤g(a1)+g(a2)++g(am)≤m•g(n+
64
n
)

依题意,不等式m•g(2)<g(n+
64
n
)
对一切的正整数n恒成立,
m
20•22+20•2
20(n+
64
n
)2+20(n+
64
n
)

m<
1
6
[(n+
64
n
)2+(n+
64
n
)]
对一切的正整数n恒成立.
n+
64
n
≥16
,∴
1
6
[(n+
64
n
)2+(n+
64
n
)]
1
6
[162+16]
=
136
3

m<
136
3
.由于m为正整数,∴m≤6.
又当m=6时,存在a1=a2═am=2,am+1=16,对所有的n满足条件.
因此,m的最大值为6.
点评:本题考查函数的综合题目,主要应用导函数求最值来解题,本题解题的关键是正确应用导数,本题是一个综合题目,综合性比较强,可以作为高考卷的压轴题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网