题目内容

已知函数.

(I)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;

(II)对任意b>0,f(x)在区间[b-lnb,+∞)上是增函数,求实数a的取值范围.

 

【答案】

(I)  (II)

【解析】

试题分析:(I)时,

所以切线为

(II)时,设

上是增函数,

恒成立恒成立,

考点:导数的几何意义及函数单调性最值

点评:利用导数的几何意义(函数在某一点处的导数值等于该点处的切线斜率)通过导数可求出直线斜率;第二问将单调性转化为导数值的正负,进而将不等式恒成立转化为求函数最值,这种不等式与函数的转化是常考的思路

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网