题目内容

15.设n∈N,且n>0,试用数学归纳法证明1+21+22+23+…+23n-1 能被31整除.

分析 当n=1时,1+21+22+23+…+25n-1=31能被31整除,假设n=k时,1+21+22+23+…+25n-1 能被31整除,则则n=k+1时,1+21+22+23+…+23(k+1)-1也能被31整除,综合可得结论.

解答 证明:当n=1时,1+21+22+23+…+25n-1=1+21+22+23+24=25-1=31能被31整除,
假设n=k时,1+21+22+23+…+25n-1 能被31整除,
不妨令1+21+22+23+…+25k-1=31a,a∈Z,
则n=k+1时,
1+21+22+23+…+23(k+1)-1
=1+21+22+23+…+25k-1+25k+25k+1+25k+2+25k+3+25k+4
=31a+25k+25k+1+25k+2+25k+3+25k+4
=31a+25k(1+21+22+23+24
=31a+31•25k也能被31整除,
综上所述n∈N,且n>0时,1+21+22+23+…+23n-1 能被31整除.

点评 本题考查的知识点是数学归纳法,熟练掌握数学归纳的证明步骤是解答的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网