题目内容
【题目】求下列函数的单调递减区间:
(1);
(2);
(3).
【答案】(1)递减区间;(2)递减区间;(3)递减区间
【解析】
(1)先利用两角和的正弦公式化简函数的解析式,再由整体代入法求解函数的递减区间.
(2)利用诱导公式化简函数,利用余弦函数的单调性求得y的减区间.
(3)先利用二倍角公式及两角差的正弦公式化简函数的解析式,再利用正弦函数的单调性求得结果.
(1)由题意得,
令2kπx2kπ,求得2kπx≤2kπ,
可得函数的减区间为.
(2)由于
令2kπ≤x2kπ+π,求得2kπx≤2kπ,
可得函数的减区间为.
(2)由于,
即求函数t=sin(2x)的增区间.
令2kπ2x2kπ,求得kπx≤kπ,
可得函数的减区间为[kπ,kπ],k∈Z.
练习册系列答案
相关题目