题目内容

如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为hi(i=1,2,3,4),若,则.类比以上性质,体积为V的三棱锥的第i个面的面积记为Si(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离记为Hi(i=1,2,3,4),若=,则=( )

A.
B.
C.
D.
【答案】分析:可得ai=ik,P是该四边形内任意一点,将P与四边形的四个定点连接,得四个小三角形,四个小三角形面积之和为四边形面积,即采用分割法求面积;同理对三棱值得体积可分割为5个已知底面积和高的小棱锥求体积.
解答:解:根据三棱锥的体积公式
得:
即S1H1+2S2H2+3S3H3+4S4H4=3V,


故选B.
点评:本题主要考查三棱锥的体积计算和运用类比思想进行推理的能力.解题的关键是理解类比推理的意义,掌握类比推理的方法.平面几何的许多结论,可以通过类比的方法,得到立体几何中相应的结论.当然,类比得到的结论是否正确,则是需要通过证明才能加以肯定的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网