题目内容

在△ABC中,若三个内角A、B、C成等差数列,且b=2,则△ABC外接圆半径为
 
分析:设外接圆的半径为 r,根据三个内角A、B、C成等差数列,求得B=60°,则由正弦定理可得
b
sinB
=2r
,解方程求得r.
解答:解:∵三个内角A、B、C成等差数列'
∴2B=A+C,A+B+C=180°,
∴B=60°,
设外接圆的半径为 r,则由正弦定理可得
b
sinB
=2r

2
sin60°
=2r,∴r=
2
3
3

故答案为:
2
3
3
点评:本题考查正弦定理的应用,得到
b
sinB
=2r
,是解题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网