题目内容
如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是 .
【答案】分析:根据周角等于360°,得到所有的基本事件对应的图形是360°角的整个平面区域,再根据射线OT落在60°的终边上,得到符合题意的事件对应的图形是所成角为60°的两条射线之间区域.最后用符合题意的图形对应的角度,除以所有的基本事件对应图形的角度,可得OA落在∠xOT内的概率.
解答:解:∵周角等于360°,
∴任作一条射线OA,它的运动轨迹可以绕原点旋转一周,
所以所有的基本事件对应的图形是360°角的整个平面区域.
∵射线OT落在60°的终边上,
∴若OA落在∠xOT内,符合题意的事件对应的图形是所成角为60°的两条射线之间区域,
记事件X=“任作一条射线OA,OA落在∠xOT内”,
可得所求的概率为:P(x)==
故答案为:
点评:本题以作一条射线,求落在指定区域的事件概率为载体,着重考查了用几何图形求概率的知识,属于基础题.
解答:解:∵周角等于360°,
∴任作一条射线OA,它的运动轨迹可以绕原点旋转一周,
所以所有的基本事件对应的图形是360°角的整个平面区域.
∵射线OT落在60°的终边上,
∴若OA落在∠xOT内,符合题意的事件对应的图形是所成角为60°的两条射线之间区域,
记事件X=“任作一条射线OA,OA落在∠xOT内”,
可得所求的概率为:P(x)==
故答案为:
点评:本题以作一条射线,求落在指定区域的事件概率为载体,着重考查了用几何图形求概率的知识,属于基础题.
练习册系列答案
相关题目
如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为( )
A、偶函数 | B、奇函数 | C、不是奇函数,也不是偶函数 | D、奇偶性与k有关 |