题目内容

6.已知f(x)=|xex|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为(  )
A.($\frac{{e}^{2}+1}{e}$,+∞)B.(-∞,-$\frac{{e}^{2}+1}{e}$)C.(-$\frac{{e}^{2}+1}{e}$,-2)D.(2,$\frac{{e}^{2}+1}{e}$)

分析 化简f(x)=|xex|=$\left\{\begin{array}{l}{x{e}^{x},x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,从而求导以确定函数的单调性,从而作出函数的简图,从而解得.

解答 解:f(x)=|xex|=$\left\{\begin{array}{l}{x{e}^{x},x≥0}\\{-x{e}^{x},x<0}\end{array}\right.$,
易知f(x)在[0,+∞)上是增函数,
当x∈(-∞,0)时,f(x)=-xex
f′(x)=-ex(x+1),
故f(x)在(-∞,-1)上是增函数,在(-1,0)上是减函数;
作其图象如下,

且f(-1)=$\frac{1}{e}$;
故若方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,
则方程x2+tx+1=0(t∈R)有两个不同的实根,且x1∈(0,$\frac{1}{e}$),x2∈($\frac{1}{e}$,+∞)∪{0},
故$\left\{\begin{array}{l}{0+0+1>0}\\{\frac{1}{{e}^{2}}+t\frac{1}{e}+1<0}\end{array}\right.$,或1=0
解得,t∈(-∞,-$\frac{{e}^{2}+1}{e}$),
故选:B.

点评 本题考查了分段函数的应用及导数的综合应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网