题目内容
(2013•乐山二模)已知数列{an}有a1=a,a2=p(常数p>0),对任意的正整数n,Sn=a1+a2+…+an,并有Sn满足Sn=
.
(I)试判断数列{an}是否是等差数列,若是,求其通项公式,若不是,说明理由;
(II)令Pn=
+
,Tn是数列{Pn}的前n项和,求证:Tn-2n<3.
n(an-a1) |
2 |
(I)试判断数列{an}是否是等差数列,若是,求其通项公式,若不是,说明理由;
(II)令Pn=
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |
分析:(I)令n=1,可得a1=0,从而Sn=
,再写一式,两式相减,利用叠乘法,即可得到结论;
(II)先确定{Pn}的通项,利用裂项法求和,即可证得结论.
nan |
2 |
(II)先确定{Pn}的通项,利用裂项法求和,即可证得结论.
解答:解:(I)令n=1,则S1=a1=
=0,即a1=0,∴Sn=
∴当n>1时,∴an=Sn-Sn-1=
∴
∵当n=1时,a1=(1-1)p=0也满足上式
∴数列{an}是一个以0为首项,p为公差的等差数列
(II)∵Sn=
=
∴Pn=
+
=
+
=2+2(
-
)
∴Tn-2n
=2(1-
+
-
+…+
-
+
-
)
=2(1+
-
-
)=3-2(
+
)<3
∴原不等式成立.….(12分)
a1-a1 |
2 |
nan |
2 |
∴当n>1时,∴an=Sn-Sn-1=
nan-(n-1)an-1 |
2 |
∴
|
∵当n=1时,a1=(1-1)p=0也满足上式
∴数列{an}是一个以0为首项,p为公差的等差数列
(II)∵Sn=
n(a1+an) |
2 |
n(n-1)p |
2 |
∴Pn=
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |
n+2 |
n |
n |
n+2 |
1 |
n |
1 |
n+2 |
∴Tn-2n
|
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n-1 |
1 |
n+1 |
1 |
n |
1 |
n+2 |
=2(1+
1 |
2 |
1 |
n+1 |
1 |
n+2 |
1 |
n+1 |
1 |
n+2 |
∴原不等式成立.….(12分)
点评:本题考查数列递推式,考查等差数列的证明,考查数列与不等式的综合,确定数列的通项,利用裂项法求和是关键.
练习册系列答案
相关题目