题目内容
已知.
(1)若a=0时,求函数在点(1,)处的切线方程;
(2)若函数在[1,2]上是减函数,求实数a的取值范围;
(3)令是否存在实数a,当是自然对数的底)时,函数 的最小值是3,若存在,求出a的值;若不存在,说明理由.
【答案】
(1)
(2)
(3)存在实数使得时有最小值3
【解析】
试题分析:解:
(1)当时,切点
切线斜率
因此,所求切线方程为
(2)由已知,当时,恒成立
即恒成立
令 则故在递减。
从而
(3)假设存在实数a,使得有最小值3
当时,对恒成立,
在上递减,
当时,对恒成立。
在 上递减,
当时, 由由
满足条件。
综上,存在实数使得时有最小值3
考点:导数的运用
点评:主要是考查了导数在研究函数单调性中的运用,属于中档题。
练习册系列答案
相关题目