ÌâÄ¿ÄÚÈÝ
ÒÑÖªÏòÁ¿m |
n |
m |
3 |
4 |
m |
n |
£¨1£©ÈôÏòÁ¿
n |
q |
¦Ð |
2 |
p |
C |
2 |
n |
p |
£¨2£©ÈôA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬Éèf£¨A£©=sin2A-2£¨sinA+cosA£©+a2£¬f£¨A£©µÄ×î´óֵΪ5-2
2 |
¦Ð |
3 |
m |
2 |
¦Ð |
2 |
·ÖÎö£ºÓÉÌâÒâÏÈÇó³öÏòÁ¿
µÄ×ø±êÂú×ãÓÐx2+y2=1
£¨1£©ÓÉÏòÁ¿
ÓëÏòÁ¿
=£¨1£¬0£©µÄ¼Ð½ÇΪ
£¬¹ÊÓÐ
•
=0£¬Óɴ˽â³öÏòÁ¿
µÄ×ø±ê£¬´úÈë|
+
|2£¬ÓÃÏà¹Ø¹«Ê½ÇóÆ䷶Χ£¬½ø¶øÇó³ö|
+
|¡Ê[
£¬
£©
£¨2£©ÏȽâ³öB=
£¬È·¶¨³öAµÄ·¶Î§£¬ÔÙ¶Ôf£¨A£©Óû»Ôª·¨±äÐΣ¬Çó³öÆä×îÖµµÄ±í´ïʽ£¬Åжϲ¢Çó³öÆä×î´óÖµÊÇ1-2
+a2£¬ÓÖÒÑÖªf£¨A£©µÄ×î´óֵΪ5-2
£¬ÁîÁ½ÕßÏàµÈ½â³ö²ÎÊýaµÄÖµ£¬ÔÙÓÉsin(2x+
)=
ÔÚ[0£¬
]ÉÏÓÐÏàÒìʵ¸ù£¬ÒÀ¾ÝÈý½Çº¯ÊýµÄÐÔÖÊÇó³ö²ÎÊýmÂú×ãµÄ·¶Î§£®
n |
£¨1£©ÓÉÏòÁ¿
n |
q |
¦Ð |
2 |
n |
q |
n |
n |
p |
n |
p |
| ||
2 |
| ||
2 |
£¨2£©ÏȽâ³öB=
¦Ð |
3 |
2 |
2 |
¦Ð |
3 |
m |
2 |
¦Ð |
2 |
½â´ð£º½â£º£¨1£©Áî
=£¨x£¬y£©£¬ÔòÓÐcos
¦Ð=
=-
ÓÉ
•
=-1µÃ|
|•|
|=
£¬ÓÖÏòÁ¿
=(1£¬1)£¬¹ÊÆäģΪ
£¬
ÔòÏòÁ¿
ÈËģΪ1£®ÔòÓÐx2+y2=1
ÏòÁ¿
ÓëÏòÁ¿
=£¨1£¬0£©µÄ¼Ð½ÇΪ
£¬¹ÊÓÐ
•
=0£¬¼´x=0£¬¹Êy=¡À1
ÓÖ
•
=-1¹Êy=-1£¬Ôò
=£¨0£¬-1£©£¬
ÏòÁ¿
=(cosA£¬2cos2
)£¬¼´
=(cosA£¬1+cosC)
ÓÖA£¬CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁÐ ¹ÊB=
|
+
|2=cos2A+cos2C=cos2A+cos2£¨
-A£©=1+
cos£¨2A+
£©
ÓÉA¡Ê£¨0£¬
£©£¬µÃ2A+
¡Ê£¨
£¬
£©µÃcos£¨2A+
£©¡Ê[-1£¬
£©
|
+
|2¡Ê[
£¬
£©¹Ê|
+
|¡Ê[
£¬
£©
£¨2£©¡ßA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬¡àB=
¡àf£¨A£©=sin2A-2£¨sinA+cosA£©+a2=2sinAcosA-2£¨sinA+cosA£©+a2
Áît=sinA+cosA=
sin£¨A+
£©£¬Ôò2sinAcosA=t2-1
ÓÉÓÚA¡Ê£¨0£¬
]£¬A+
¡Ê£¨
£¬
]£¬¹Êt=
sin£¨A+
£©¡Ê£¨1£¬
]
¹ÊÓÐf£¨A£©=t2-1-2t+a2=t2-2t+a2-1£¬t¡Ê£¨1£¬
]
µ±t=
ʱȡµ½×î´óֵΪ1-2
+a2
ÓÖf£¨A£©µÄ×î´óֵΪ5-2
£¬¹Ê1-2
+a2=5-2
¹Êa2=4£¬ÓÖa£¾0£¬¹Êa=2
ÓÖ¹ØÓڵķ½³Ìsin(ax+
)=
(a£¾0)ÔÚ[0£¬
]ÉÏÓÐÏàÒìʵ¸ù
¼´·½³Ìsin(2x+
)=
ÔÚ[0£¬
]ÉÏÓÐÏàÒìʵ¸ù
ÒòΪx¡Ê[0£¬
]£¬¹Êy=sin(2x+
)ÔÚ£¨0£¬
£©ÉÏÊÇÔöº¯Êý£¬ÔÚ£¨
£¬
£©ÉÏÊǼõº¯Êý
·½³Ìsin(2x+
)=
ÔÚ[0£¬
]ÉÏÓÐÏàÒìʵ¸ù
¹Ê
¡Ê[
£¬1£©£¬
¹Êm¡Ê[
£¬2£©£®
n |
3 |
4 |
| ||||
|
| ||
2 |
ÓÉ
m |
n |
m |
n |
2 |
m |
2 |
ÔòÏòÁ¿
n |
ÏòÁ¿
n |
q |
¦Ð |
2 |
n |
q |
ÓÖ
m |
n |
n |
ÏòÁ¿
p |
C |
2 |
p |
ÓÖA£¬CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁÐ ¹ÊB=
¦Ð |
3 |
|
n |
p |
2¦Ð |
3 |
1 |
2 |
¦Ð |
3 |
ÓÉA¡Ê£¨0£¬
2¦Ð |
3 |
¦Ð |
3 |
¦Ð |
3 |
5¦Ð |
3 |
¦Ð |
3 |
1 |
2 |
|
n |
p |
1 |
2 |
5 |
4 |
n |
p |
| ||
2 |
| ||
2 |
£¨2£©¡ßA¡¢B¡¢CΪ¡÷ABCµÄÄڽǣ¬ÇÒA£¬B£¬CÒÀ´Î³ÉµÈ²îÊýÁУ¬A¡ÜB¡ÜC£¬¡àB=
¦Ð |
3 |
¡àf£¨A£©=sin2A-2£¨sinA+cosA£©+a2=2sinAcosA-2£¨sinA+cosA£©+a2
Áît=sinA+cosA=
2 |
¦Ð |
4 |
ÓÉÓÚA¡Ê£¨0£¬
¦Ð |
3 |
¦Ð |
4 |
¦Ð |
4 |
7¦Ð |
12 |
2 |
¦Ð |
4 |
2 |
¹ÊÓÐf£¨A£©=t2-1-2t+a2=t2-2t+a2-1£¬t¡Ê£¨1£¬
2 |
µ±t=
2 |
2 |
ÓÖf£¨A£©µÄ×î´óֵΪ5-2
2 |
2 |
2 |
¹Êa2=4£¬ÓÖa£¾0£¬¹Êa=2
ÓÖ¹ØÓڵķ½³Ìsin(ax+
¦Ð |
3 |
m |
2 |
¦Ð |
2 |
¼´·½³Ìsin(2x+
¦Ð |
3 |
m |
2 |
¦Ð |
2 |
ÒòΪx¡Ê[0£¬
¦Ð |
2 |
¦Ð |
3 |
¦Ð |
12 |
¦Ð |
12 |
¦Ð |
2 |
·½³Ìsin(2x+
¦Ð |
3 |
m |
2 |
¦Ð |
2 |
¹Ê
m |
2 |
| ||
2 |
¹Êm¡Ê[
3 |
µãÆÀ£º±¾Ì⿼µãÊÇÈý½Çº¯ÊýµÄ×îÖµ£¬×ÛºÏÀûÓöþ´Îº¯ÊýµÄ×îÖµ£¬ÏòÁ¿µÄÔËË㣬Èý½Çº¯ÊýµÄºãµÈ±äÐΣ¬Èý½Çº¯ÊýµÄ×îÖµ£¬¼°Èý½Çº¯ÊýµÄͼÏó£¬Éæ¼°µ½ÖªÊ¶¹ã¶È¸ß£¬×ÛºÏÐÔÇ¿£¬×öÌâʱҪÓÐÄÍÐĵضÔÌâÄ¿ÖÐËù¸øµÄÿһ¸öÌõ¼þϸÐÄ¡¢ÑϽ÷ת»¯£¬¶Ôÿһ¸öÌõ¼þËùÔ̺¬µÄ±¾ÖʽøÐÐÍÚ¾ò£¬Öð²½Ïò½áÂÛ¿¿½ü£¬Èç±¾ÌâÖеڶþСÌ⣬Öð²ãÍƽø±È½ÏÃ÷ÏÔ£¬´ðÌâ¹ý³ÌÖÐ×ÐϸÌå»á´Ë˼άÂöÂ磮
![](http://thumb.zyjl.cn/images/loading.gif)
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿