题目内容
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
|
3 |
2 |
4 |
|
|
0 |
4 |
(Ⅰ)求的标准方程;
(Ⅱ)请问是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由。
(Ⅰ)设抛物线,则有,据此验证个点知(3,)、(4,4)在抛物线上,易求 ………………2分
设:,把点(2,0)(,)代入得:
解得
∴方程为 ……………………………………5分
(Ⅱ)法一:
假设存在这样的直线过抛物线焦点,设直线的方程为两交点坐标为,
由消去,得…………………………7分
∴ ①
② ………………………9分
由,即,得
将①②代入(*)式,得, 解得 …………………11分
所以假设成立,即存在直线满足条件,且的方程为:或
【解析】略
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
| 3 | 2 | 4 |
|
|
| 0 | 4 |
|
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为原点,每条曲线上取两个点,将其坐标记录于表中:
(1)求,的标准方程;
(2)设斜率不为0的动直线与有且只有一个公共点,且与的准线交于,试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,请说明理由.
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点、,且满足.若存在,求出直线的方程;若不存在,请说明理由.
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
3 |
4 |
|||
0 |
(1)求,的标准方程;
(2)请问是否存在直线满足条件:①过的焦点;②与交于不同两点,,且满足?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分12分)
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上各取两个点,将其坐标记录于下表中:
3 |
2 |
4 |
||
0 |
4 |
[ |
⑴求的标准方程;
⑵是否存在直线满足条件:①过的焦点;②与交不同两点且满足?若存在,求出直线的方程;若不存在,说明理由.