题目内容
如图,已知△OFQ的面积为S,且![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_ST/0.png)
(Ⅰ)若
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_ST/2.png)
(Ⅱ)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_ST/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_ST/images5.png)
【答案】分析:(Ⅰ)令
,由题设知
,
,∵
,∴
,由此可求出
的范围..
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),由题设知
.
,
.由此知
,由此入手,当
取最小值时,能够求出椭圆的方程.
解答:解:(Ⅰ)令
,
∵
,∴
,∴
,
∵
=
,
∴
,∵
,∴
,
∵θ∈[0,π],∴
.
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),
且
.
∵
,
∴
.
∴
,∴
.
∴
,
∵c≥2,
∴当c=2时,
最小,此时Q(
),
设椭圆方程为
,
∴
,
∴a2=10,b2=6.
∴所求椭圆为
.
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意积累解题方法.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/5.png)
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),由题设知
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/10.png)
解答:解:(Ⅰ)令
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/11.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/13.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/14.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/16.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/19.png)
∵θ∈[0,π],∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/20.png)
(Ⅱ)以O为原点,OF所在直线为x轴建立直角坐标系,并令Q(m,n),则F(c,0),
且
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/21.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/22.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/23.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/25.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/26.png)
∵c≥2,
∴当c=2时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/27.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/28.png)
设椭圆方程为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/29.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/30.png)
∴a2=10,b2=6.
∴所求椭圆为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024180529380390669/SYS201310241805293803906013_DA/31.png)
点评:本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意积累解题方法.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目