题目内容
求矩阵A=的逆矩阵.
解析
(1)设,若矩阵A=的变换把直线变换为另一直线.(1)求的值;(2)求矩阵A的特征值.
二阶矩阵M对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).(1)求矩阵M;(2)若直线l在此变换下所变换成的直线的解析式l′:11x-3y-68=0,求直线l的方程.
已知△ABC,A(-1,0),B(3,0),C(2,1),对它先作关于x轴的反射变换,再将所得图形绕原点逆时针旋转90°.(1)分别求两次变换所对应的矩阵M1,M2.(2)求△ABC在两次连续的变换作用下所得到的△A'B'C'的面积.
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸压变换.(1)求矩阵M的特征值及相应的特征向量;(2)求逆矩阵M-1以及椭圆=1在M-1的作用下的新曲线的方程.
已知矩阵, (1)求逆矩阵;(2)若矩阵满足,试求矩阵.
已知,则=_______
曲线x2-4y2=16在y轴方向上进行伸缩变换,伸缩系数k=2,求变换后的曲线方程.
求函数y=x2在矩阵M=变换作用下的解析式.