题目内容
已知等差数列{an}中,Sn是它前n项和,设a6=2,S10=10.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按取出的顺序组成一个新数列{bn},试求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按取出的顺序组成一个新数列{bn},试求数列{bn}的前n项和Tn.
(1)设数列{an}首项,公差分别为a1,d.
则由已知得a1+5d=2①
10a1+
d=10②
联立①②解得a1=-8,d=2,
所以an=2n-10(n∈N*).
(2)bn=a2n=2•2n-10=2n+1-10(n∈N*),
所以Tn=b1+b2+…+bn=
-10n=2n+2-10n-4.
则由已知得a1+5d=2①
10a1+
10×9 |
2 |
联立①②解得a1=-8,d=2,
所以an=2n-10(n∈N*).
(2)bn=a2n=2•2n-10=2n+1-10(n∈N*),
所以Tn=b1+b2+…+bn=
4(1-2n) |
1-2 |
练习册系列答案
相关题目