ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÍÖÔ²C1£º$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãÓëÅ×ÎïÏßC2£ºx2=4yµÄ½¹µãÖغϣ¬ÀëÐÄÂÊe=$\frac{1}{2}$£®£¨1£©ÇóÍÖÔ²ClµÄ·½³Ì£»
£¨2£©ÉèPÊÇÅ×ÎïÏßC2×¼ÏßÉϵÄÒ»¸ö¶¯µã£¬¹ýP×÷Å×ÎïÏßµÄÇÐÏßPA¡¢PB£¬A¡¢BΪÇе㣮
£¨i£©ÇóÖ¤£ºÖ±ÏßAB¾¹ýÒ»¸ö¶¨µã£»
£¨ii£©ÈôÖ±ÏßABÓëÍÖÔ²C1½»ÓèM¡¢NÁ½µã£¬ÍÖÔ²µÄϽ¹µãΪF¡ä£¬Çó¡÷MF¡äNÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨1£©ÇóµÃÅ×ÎïÏߵĽ¹µã£¬¿ÉµÃÍÖÔ²µÄc=1£¬ÔÙÓÉÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹Øϵ£¬¼ÆËã¼´¿ÉµÃµ½a£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©£¨i£©ÉèP£¨t£¬-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÔËÓõ¼Êý£¬ÇóµÃÇÐÏßµÄбÂÊ£¬ÇóµÃPA£¬PBµÄ·½³Ì£¬½ø¶øµÃµ½Ö±ÏßABµÄ·½³Ì£¬¼´¿ÉµÃµ½¶¨µã£¨0£¬1£©£»
£¨ii£©ÓÉÌâÒâµÃÖ±ÏßABбÂÊ´æÔÚ£¬ÉèAB£ºy=kx+1£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°Èý½ÇÐεÄÃæ»ý¹«Ê½£¬µÃµ½kµÄ¹Øϵʽ£¬ÔÙÓɵ¼ÊýÅжϺ¯Êýf£¨u£©=3u+$\frac{1}{u}$£¨u¡Ý1£©µÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃµ½×î´óÖµ£®
½â´ð ½â£º£¨1£©Å×ÎïÏßC2£ºx2=4yµÄ½¹µãΪ£¨0£¬1£©£¬ÔòÍÖÔ²µÄc=1£¬
ÓÉÓÚÍÖÔ²ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{1}{2}$£¬Ôòa=2£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²·½³ÌΪ$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1£»
£¨2£©£¨i£©Ö¤Ã÷£ºÅ×ÎïÏßµÄ×¼ÏßΪy=-1£¬ÉèP£¨t£¬-1£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
Ôòx12=4y1£¬x22=4y2£¬
y=$\frac{1}{4}$x2µÄµ¼ÊýΪy¡ä=$\frac{1}{2}$x£¬
kPA=$\frac{1}{2}$x1£¬PA£ºy-y1=$\frac{1}{2}$x1£¨x-x1£©¼´y=$\frac{1}{2}$x1x-$\frac{1}{2}$x12+y1£¬
½«x12=4y1´úÈëµÃPA£ºy=$\frac{1}{2}$x1x-y1£¬
PA¹ýµãP£¨t£¬-1£©´úÈëµÃtx1-2y1+2=0£¬
ͬÀí¿ÉµÃÓÉPB¹ýµãP£¨t£¬-1£©¿ÉµÃtx2-2y2+2=0£¬
ÔòÖ±ÏßAB£ºtx-2y+2=0£¬
¹ÊÖ±ÏßABºã¹ý¶¨µã£¨0£¬1£©£»
£¨ii£©ÓÉÌâÒâµÃÖ±ÏßABбÂÊ´æÔÚ£¬ÉèAB£ºy=kx+1£¬´úÈëÍÖÔ²·½³Ì$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1£¬
µÃ£¨3k2+4£©x2+6kx-9=0£¬Ò×µÃÅбðʽ´óÓÚ0ºã³ÉÁ¢£¬
ÉèM£¨x3£¬y3£©£¬N£¨x4£¬y4£©£¬
x3+x4=-$\frac{6k}{3{k}^{2}+4}$£¬x3x4=-$\frac{9}{3{k}^{2}+4}$£¬
¼´ÓÐS¡÷MNF'=$\frac{1}{2}$|FF'|•|x3-x4|=|x3-x4|=$\sqrt{\frac{36{k}^{2}}{£¨3{k}^{2}+4£©^{2}}+\frac{36}{3{k}^{2}+4}}$=$\frac{12k\sqrt{1+{k}^{2}}}{3{k}^{2}+4}$£¬
Áîu=$\sqrt{1+{k}^{2}}$£¨u¡Ý1£©£¬¼´ÓÐk2=u2-1£¬
S¡÷MNF'=$\frac{12u}{3{u}^{2}+1}$=$\frac{12}{3u+\frac{1}{u}}$£¬Áîf£¨u£©=3u+$\frac{1}{u}$£¨u¡Ý1£©£¬
f¡ä£¨u£©=3-$\frac{1}{{u}^{2}}$£¾0£¬Ôòf£¨u£©ÔÚ[1£¬+¡Þ£©µÝÔö£¬
Ôòµ±u=1£¬¼´k=0ʱ£¬S¡÷MNF'=È¡µÃ×î´óÖµ3£®
¡÷MF¡äNÃæ»ýµÄ×î´óֵΪ3£¬´Ëʱk=0£¬ABµÄ·½³ÌΪy=1£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏߺÍÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʺͷ½³ÌµÄÔËÓã¬Í¬Ê±¿¼²éÍÖÔ²·½³ÌºÍÖ±ÏßÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°Ö±Ïߺã¹ý¶¨µãµÄÇ󷨣¬×¢ÒâÔËÓú¯ÊýµÄµ¥µ÷ÐÔÇó×îÖµµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮
A£® | [-$\frac{¦Ð}{4}$+k¦Ð£¬$\frac{¦Ð}{4}$+k¦Ð]£¬k¡ÊZ | B£® | [-$\frac{¦Ð}{6}$+k¦Ð£¬$\frac{¦Ð}{3}$+k¦Ð]£¬k¡ÊZ | ||
C£® | [-$\frac{¦Ð}{3}$+k¦Ð£¬$\frac{¦Ð}{6}$+k¦Ð]£¬k¡ÊZ | D£® | [k¦Ð£¬$\frac{¦Ð}{2}$+k¦Ð]£¬k¡ÊZ |
ѧÉú±àºÅ | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 |
ÈýÏî³É¼¨ | 2£¬1£¬2 | 1£¬2£¬2 | 2£¬3£¬2 | 3£¬1£¬1 | 3£¬2£¬2 | 2£¬3£¬1 | 3£¬3£¬3 | 1£¬1£¬1 | 3£¬3£¬1 | 2£¬2£¬2 |
£¨2£©´Ó±íÖÐÉíÌåËØÖʵȼ¶¼ÇΪ²»ºÏ¸ñµÄѧÉúÖÐÈÎÒâ³éÈ¡2ÈË×é³ÉС×é¼ÓÇ¿¶ÍÁ¶£¬ÇóÕâ2ÈËÈýÏî²âÊÔ×Ü·ÖÏàͬµÄ¸ÅÂÊ£®